Synergetic effect of nanoclay and nano-CaCO3 hybrid filler systems on the foaming properties and cellular structure of polystyrene nanocomposite foams using supercritical CO2
{"title":"Synergetic effect of nanoclay and nano-CaCO3 hybrid filler systems on the foaming properties and cellular structure of polystyrene nanocomposite foams using supercritical CO2","authors":"Xinghan Lian, Wenjie Mou, Tairong Kuang, Xianhu Liu, Shuidong Zhang, Fangfang Li, Tongxun Liu, Xiangfang Peng","doi":"10.1177/0262489319900948","DOIUrl":null,"url":null,"abstract":"Supercritical fluids have been widely used to prepare various polymer nanocomposite foams due to their high-efficiency, rich-resource, and environment-friendly characteristics. In this work, we prepared polystyrene (PS) nanocomposites with different contents of hybrid fillers of nanoclay and nano-calcium carbonate (nano-CaCO3) and then were foamed by batch foaming method using supercritical carbon dioxide as a physical blowing agent. The effect of hybrid nanofillers components and foaming temperature and pressure on the foaming properties and cellular structure of PS nanocomposite foams was systematically investigated. Dynamic rheology results indicated that the complex viscosity and storage modulus were enhanced with the addition of hybrid fillers. Scanning electron microscopic images show that all samples foamed uniformly macrocells under the given conditions. More importantly, the hybrid fillers of nano-CaCO3 and nanoclay exhibit a significant synergistic effect in improving PS foaming properties, which can be ascribed to the different roles of the two fillers during cell nucleation and cell growth. For instance, the PS/0.22/0.88 nanocomposite foamed under the conditions of 20 MPa and 130°C has shown the finest cell structure (higher cell density of 1.91 × 1010 and smaller cell diameter of 2.28 µm) due to the coeffect of the hybrid nanofillers. Finally, the synergistic mechanism of these two nanofillers on PS foaming behavior was discussed.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"39 1","pages":"185 - 202"},"PeriodicalIF":1.3000,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489319900948","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0262489319900948","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3
Abstract
Supercritical fluids have been widely used to prepare various polymer nanocomposite foams due to their high-efficiency, rich-resource, and environment-friendly characteristics. In this work, we prepared polystyrene (PS) nanocomposites with different contents of hybrid fillers of nanoclay and nano-calcium carbonate (nano-CaCO3) and then were foamed by batch foaming method using supercritical carbon dioxide as a physical blowing agent. The effect of hybrid nanofillers components and foaming temperature and pressure on the foaming properties and cellular structure of PS nanocomposite foams was systematically investigated. Dynamic rheology results indicated that the complex viscosity and storage modulus were enhanced with the addition of hybrid fillers. Scanning electron microscopic images show that all samples foamed uniformly macrocells under the given conditions. More importantly, the hybrid fillers of nano-CaCO3 and nanoclay exhibit a significant synergistic effect in improving PS foaming properties, which can be ascribed to the different roles of the two fillers during cell nucleation and cell growth. For instance, the PS/0.22/0.88 nanocomposite foamed under the conditions of 20 MPa and 130°C has shown the finest cell structure (higher cell density of 1.91 × 1010 and smaller cell diameter of 2.28 µm) due to the coeffect of the hybrid nanofillers. Finally, the synergistic mechanism of these two nanofillers on PS foaming behavior was discussed.
期刊介绍:
Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution.
Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included.
Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.