Controllability of Nonlocal Impulsive Functional Differential Equations with Measure of Noncompactness in Banach Spaces

Q4 Mathematics
Dlmplekumar N. Chalishajar, K. Karthikeyan, Dhachinamoorthi Tamizharasan
{"title":"Controllability of Nonlocal Impulsive Functional Differential Equations with Measure of Noncompactness in Banach Spaces","authors":"Dlmplekumar N. Chalishajar, K. Karthikeyan, Dhachinamoorthi Tamizharasan","doi":"10.22436/JNSA.014.06.03","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with the controllability of impulsive differential equations with nonlocal conditions. First, we establish a property of measure of noncompactness in the space of piecewise continuous functions. Then, by using this property and Darbo-Sadovskii’s Fixed Point Theorem, we get the controllability of nonlocal impulsive differential equations under compactness conditions, Lipschitz conditions and mixed-type conditions, respectively.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"79 1","pages":"59 - 80"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/JNSA.014.06.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract This paper is concerned with the controllability of impulsive differential equations with nonlocal conditions. First, we establish a property of measure of noncompactness in the space of piecewise continuous functions. Then, by using this property and Darbo-Sadovskii’s Fixed Point Theorem, we get the controllability of nonlocal impulsive differential equations under compactness conditions, Lipschitz conditions and mixed-type conditions, respectively.
Banach空间中具有非紧性测度的非局部脉冲泛函微分方程的能控性
摘要本文研究具有非局部条件的脉冲微分方程的可控性问题。首先,我们建立了分段连续函数空间中非紧测度的一个性质。然后,利用该性质和Darbo-Sadovskii不动点定理,分别在紧性条件、Lipschitz条件和混合型条件下,得到了非局部脉冲微分方程的可控性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信