{"title":"Normal generators for mapping class groups are abundant","authors":"Justin Lanier, D. Margalit","doi":"10.4171/cmh/526","DOIUrl":null,"url":null,"abstract":"We provide a simple criterion for an element of the mapping class group of a closed surface to have normal closure equal to the whole mapping class group. We apply this to show that every nontrivial periodic mapping class that is not a hyperelliptic involution is a normal generator for the mapping class group when the genus is at least 3. We also give many examples of pseudo-Anosov normal generators, answering a question of D. D. Long. In fact we show that every pseudo-Anosov mapping class with stretch factor less than $\\sqrt{2}$ is a normal generator. Even more, we give pseudo-Anosov normal generators with arbitrarily large stretch factors and arbitrarily large translation lengths on the curve graph, disproving a conjecture of Ivanov.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/526","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 25
Abstract
We provide a simple criterion for an element of the mapping class group of a closed surface to have normal closure equal to the whole mapping class group. We apply this to show that every nontrivial periodic mapping class that is not a hyperelliptic involution is a normal generator for the mapping class group when the genus is at least 3. We also give many examples of pseudo-Anosov normal generators, answering a question of D. D. Long. In fact we show that every pseudo-Anosov mapping class with stretch factor less than $\sqrt{2}$ is a normal generator. Even more, we give pseudo-Anosov normal generators with arbitrarily large stretch factors and arbitrarily large translation lengths on the curve graph, disproving a conjecture of Ivanov.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.