Normal generators for mapping class groups are abundant

IF 1.1 3区 数学 Q1 MATHEMATICS
Justin Lanier, D. Margalit
{"title":"Normal generators for mapping class groups are abundant","authors":"Justin Lanier, D. Margalit","doi":"10.4171/cmh/526","DOIUrl":null,"url":null,"abstract":"We provide a simple criterion for an element of the mapping class group of a closed surface to have normal closure equal to the whole mapping class group. We apply this to show that every nontrivial periodic mapping class that is not a hyperelliptic involution is a normal generator for the mapping class group when the genus is at least 3. We also give many examples of pseudo-Anosov normal generators, answering a question of D. D. Long. In fact we show that every pseudo-Anosov mapping class with stretch factor less than $\\sqrt{2}$ is a normal generator. Even more, we give pseudo-Anosov normal generators with arbitrarily large stretch factors and arbitrarily large translation lengths on the curve graph, disproving a conjecture of Ivanov.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/526","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 25

Abstract

We provide a simple criterion for an element of the mapping class group of a closed surface to have normal closure equal to the whole mapping class group. We apply this to show that every nontrivial periodic mapping class that is not a hyperelliptic involution is a normal generator for the mapping class group when the genus is at least 3. We also give many examples of pseudo-Anosov normal generators, answering a question of D. D. Long. In fact we show that every pseudo-Anosov mapping class with stretch factor less than $\sqrt{2}$ is a normal generator. Even more, we give pseudo-Anosov normal generators with arbitrarily large stretch factors and arbitrarily large translation lengths on the curve graph, disproving a conjecture of Ivanov.
用于映射类组的常规生成器非常多
我们提供了一个简单的准则,使一个封闭曲面的映射类群的元素具有等于整个映射类群的法向闭包。我们应用这一理论证明了当属至少为3时,每一个非超椭圆对合的非平凡周期映射类都是映射类群的正规生成器。我们还给出了许多伪anosov法向生成器的例子,回答了d.d.l ong的一个问题。事实上,我们证明了每个伸缩因子小于$\sqrt{2}$的伪anosov映射类都是一个正常的生成器。更进一步,我们给出了曲线图上具有任意大的拉伸因子和任意大的平移长度的伪anosov法向生成器,从而反驳了Ivanov的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信