W$W$ ‐algebras associated to surfaces

IF 1.5 1区 数学 Q1 MATHEMATICS
Andrei Neguț
{"title":"W$W$ ‐algebras associated to surfaces","authors":"Andrei Neguț","doi":"10.1112/plms.12435","DOIUrl":null,"url":null,"abstract":"We define an integral form of the deformed W$W$ ‐algebra of type glr${\\mathfrak {gl}}_r$ , and construct its action on the K$K$ ‐theory groups of moduli spaces of rank r$r$ stable sheaves on a smooth projective surface S$S$ , under certain assumptions. Our construction generalizes the action studied by Nakajima, Grojnowski and Baranovsky in cohomology, although the appearance of deformed W$W$ ‐algebras by generators and relations is a new feature. Physically, this action encodes the Alday–Gaiotto–Tachikawa correspondence for 5‐dimensional supersymmetric gauge theory on S×$S \\times$ circle.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12435","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We define an integral form of the deformed W$W$ ‐algebra of type glr${\mathfrak {gl}}_r$ , and construct its action on the K$K$ ‐theory groups of moduli spaces of rank r$r$ stable sheaves on a smooth projective surface S$S$ , under certain assumptions. Our construction generalizes the action studied by Nakajima, Grojnowski and Baranovsky in cohomology, although the appearance of deformed W$W$ ‐algebras by generators and relations is a new feature. Physically, this action encodes the Alday–Gaiotto–Tachikawa correspondence for 5‐dimensional supersymmetric gauge theory on S×$S \times$ circle.
与曲面相关的W$W$-代数
我们定义了glr${\mathfrak {gl}}_r$的变形W$W$‐代数的一个积分形式,并在一定的假设条件下构造了它对光滑投影曲面S$S$上秩r$r$稳定束的模空间K$K$‐理论群的作用。我们的构造推广了Nakajima, Grojnowski和Baranovsky在上同调中所研究的作用,尽管通过生成和关系出现变形的W$W$‐代数是一个新的特征。在物理上,这一作用编码了sx $S \ ×$圆上5维超对称规范理论的Alday-Gaiotto-Tachikawa对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信