Haoyuan Cheng, J. Chu, Ran Zhang, Lianbiao Tian, Xinyuan Gui
{"title":"Turbid Underwater Polarization Patterns Considering Multiple Mie Scattering of Suspended Particles","authors":"Haoyuan Cheng, J. Chu, Ran Zhang, Lianbiao Tian, Xinyuan Gui","doi":"10.14358/pers.86.12.737","DOIUrl":null,"url":null,"abstract":"It is still unclear how water turbidity affects the underwater polarization pattern. Current simulations only consider single Rayleigh scattering of water molecules and ignore multiple Mie scattering of suspended particles. In this study, a method based on a combination of Monte Carlo\n numerical simulation and Mie scattering theory is used to establish a model of the turbid underwater polarization distribution. Stokes vector and Mueller matrix are used to simulate the underwater polarization patterns within Snell's window. The distribution patterns and dynamic changes of\n the simulation are consistent with field measurements. The maximum depth that the polarization pattern can be maintained is calculated for different water types. The influence of water turbidity on polarization patterns is discussed. This model provides a tool for researchers to quantitatively\n analyze the distribution of turbid underwater polarization. In addition, the study is valuable for remote sensing and marine surveillance.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"86 1","pages":"737-743"},"PeriodicalIF":2.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering and Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.14358/pers.86.12.737","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 9
Abstract
It is still unclear how water turbidity affects the underwater polarization pattern. Current simulations only consider single Rayleigh scattering of water molecules and ignore multiple Mie scattering of suspended particles. In this study, a method based on a combination of Monte Carlo
numerical simulation and Mie scattering theory is used to establish a model of the turbid underwater polarization distribution. Stokes vector and Mueller matrix are used to simulate the underwater polarization patterns within Snell's window. The distribution patterns and dynamic changes of
the simulation are consistent with field measurements. The maximum depth that the polarization pattern can be maintained is calculated for different water types. The influence of water turbidity on polarization patterns is discussed. This model provides a tool for researchers to quantitatively
analyze the distribution of turbid underwater polarization. In addition, the study is valuable for remote sensing and marine surveillance.
期刊介绍:
Photogrammetric Engineering & Remote Sensing commonly referred to as PE&RS, is the official journal of imaging and geospatial information science and technology. Included in the journal on a regular basis are highlight articles such as the popular columns “Grids & Datums” and “Mapping Matters” and peer reviewed technical papers.
We publish thousands of documents, reports, codes, and informational articles in and about the industries relating to Geospatial Sciences, Remote Sensing, Photogrammetry and other imaging sciences.