A Denoising PDE Model based on Isotropic Diffusion and Total Variation Models

IF 1.1 Q2 MATHEMATICS, APPLIED
Neda Mohamadi, A. Soheili, F. Toutounian
{"title":"A Denoising PDE Model based on Isotropic Diffusion and Total Variation Models","authors":"Neda Mohamadi, A. Soheili, F. Toutounian","doi":"10.22034/CMDE.2020.26116.1331","DOIUrl":null,"url":null,"abstract":"In this paper, a denoising PDE model based on a combination of the isotropic diffusion and total variation models is presented. The new weighted model is able to be adaptive in each region in accordance with the image’s information. The model performs more diffusion in the flat regions of the image, and less diffusion in the edges of the image. The new model has more ability to restore the image in terms of peak signal to noise ratio and visual quality, compared with total variation, isotropic diffusion, and some well-known models. Experimental results show that the model is able to suppress the noise effectively while preserving texture features and edge information well.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.26116.1331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a denoising PDE model based on a combination of the isotropic diffusion and total variation models is presented. The new weighted model is able to be adaptive in each region in accordance with the image’s information. The model performs more diffusion in the flat regions of the image, and less diffusion in the edges of the image. The new model has more ability to restore the image in terms of peak signal to noise ratio and visual quality, compared with total variation, isotropic diffusion, and some well-known models. Experimental results show that the model is able to suppress the noise effectively while preserving texture features and edge information well.
基于各向同性扩散和全变分模型的PDE去噪模型
本文提出了一种基于各向同性扩散和全变分模型相结合的去噪PDE模型。新的加权模型能够根据图像的信息在每个区域中是自适应的。该模型在图像的平坦区域中执行更多的扩散,而在图像的边缘中执行更少的扩散。与总变异、各向同性扩散和一些众所周知的模型相比,新模型在峰值信噪比和视觉质量方面具有更强的图像恢复能力。实验结果表明,该模型能够有效地抑制噪声,同时很好地保留纹理特征和边缘信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信