On the relationships between some meta-mathematical properties of arithmetical theories

Pub Date : 2023-03-27 DOI:10.1093/jigpal/jzad015
Yong Cheng
{"title":"On the relationships between some meta-mathematical properties of arithmetical theories","authors":"Yong Cheng","doi":"10.1093/jigpal/jzad015","DOIUrl":null,"url":null,"abstract":"\n In this work, we aim at understanding incompleteness in an abstract way via metamathematical properties of formal theories. We systematically examine the relationships between the following twelve important metamathematical properties of arithmetical theories: Rosser, EI (effectively inseparable), RI (recursively inseparable), TP (Turing persistent), EHU (essentially hereditarily undecidable), EU (essentially undecidable), Creative, $\\textbf{0}^{\\prime }$ (theories with Turing degree $\\textbf{0}^{\\prime }$), REW (all RE sets are weakly representable), RFD (all recursive functions are definable), RSS (all recursive sets are strongly representable), RSW (all recursive sets are weakly representable). Given any two properties $P$ and $Q$ in the above list, we examine whether $P$ implies $Q$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzad015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we aim at understanding incompleteness in an abstract way via metamathematical properties of formal theories. We systematically examine the relationships between the following twelve important metamathematical properties of arithmetical theories: Rosser, EI (effectively inseparable), RI (recursively inseparable), TP (Turing persistent), EHU (essentially hereditarily undecidable), EU (essentially undecidable), Creative, $\textbf{0}^{\prime }$ (theories with Turing degree $\textbf{0}^{\prime }$), REW (all RE sets are weakly representable), RFD (all recursive functions are definable), RSS (all recursive sets are strongly representable), RSW (all recursive sets are weakly representable). Given any two properties $P$ and $Q$ in the above list, we examine whether $P$ implies $Q$.
分享
查看原文
算术理论的一些元数学性质之间的关系
在这项工作中,我们旨在通过形式理论的元数学性质,以抽象的方式理解不完全性。我们系统地研究了算术理论的以下12个重要元数学性质之间的关系:Rosser,EI(有效不可分),RI(递归不可分的),TP(图灵持久性),EHU(本质上遗传不可判定),EU(本质上不可判定的),Creative,$\textbf{0}^{\prime}$,REW(所有RE集合都是弱可表示的),RFD(所有递归函数都是可定义的),RSS(所有递归集合都是强可表示的,RSW(所有递归集都是弱表示的)。给定上面列表中的任何两个属性$P$和$Q$,我们检查$P$是否意味着$Q$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信