Object Segmentation using Local Histograms, Invasive Weed Optimization Algorithm and Texture Analysis

Somayye Bayatpour, S. Hasheminejad
{"title":"Object Segmentation using Local Histograms, Invasive Weed Optimization Algorithm and Texture Analysis","authors":"Somayye Bayatpour, S. Hasheminejad","doi":"10.22044/JADM.2021.10200.2158","DOIUrl":null,"url":null,"abstract":"Most of the methods proposed for segmenting image objects are supervised methods which are costly due to their need for large amounts of labeled data. However, in this article, we have presented a method for segmenting objects based on a meta-heuristic optimization which does not need any training data. This procedure consists of two main stages of edge detection and texture analysis. In the edge detection stage, we have utilized invasive weed optimization (IWO) and local thresholding. Edge detection methods that are based on local histograms are efficient methods, but it is very difficult to determine the desired parameters manually. In addition, these parameters must be selected specifically for each image. In this paper, a method is presented for automatic determination of these parameters using an evolutionary algorithm. Evaluation of this method demonstrates its high performance on natural images.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2021.10200.2158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Most of the methods proposed for segmenting image objects are supervised methods which are costly due to their need for large amounts of labeled data. However, in this article, we have presented a method for segmenting objects based on a meta-heuristic optimization which does not need any training data. This procedure consists of two main stages of edge detection and texture analysis. In the edge detection stage, we have utilized invasive weed optimization (IWO) and local thresholding. Edge detection methods that are based on local histograms are efficient methods, but it is very difficult to determine the desired parameters manually. In addition, these parameters must be selected specifically for each image. In this paper, a method is presented for automatic determination of these parameters using an evolutionary algorithm. Evaluation of this method demonstrates its high performance on natural images.
基于局部直方图、入侵杂草优化算法和纹理分析的目标分割
提出的用于分割图像对象的大多数方法都是有监督的方法,由于它们需要大量的标记数据,因此成本高昂。然而,在本文中,我们提出了一种基于元启发式优化的对象分割方法,该方法不需要任何训练数据。该过程包括边缘检测和纹理分析两个主要阶段。在边缘检测阶段,我们使用了入侵杂草优化(IWO)和局部阈值。基于局部直方图的边缘检测方法是有效的方法,但很难手动确定所需的参数。此外,必须为每个图像专门选择这些参数。本文提出了一种使用进化算法自动确定这些参数的方法。对该方法的评价表明,该方法在自然图像上具有较高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信