Zk-Magic Labeling of Path Union of Graphs

IF 0.5 Q3 MATHEMATICS
P. Jeyanthi, K. Daisy, A. Semaničová-Feňovčíková
{"title":"Zk-Magic Labeling of Path Union of Graphs","authors":"P. Jeyanthi, K. Daisy, A. Semaničová-Feňovčíková","doi":"10.4067/s0719-06462019000200015","DOIUrl":null,"url":null,"abstract":"For any non-trivial Abelian group A under addition a graph G is said to be A-magic if there exists a labeling f : E(G) → A − {0} such that, the vertex labeling f+ defined as f+(v) = ∑f(uv) taken over all edges uv incident at v is a constant. An A-magic graph G is said to be Zk-magic graph if the group A is Zk, the group of integers modulo k and these graphs are referred as k-magic graphs. In this paper we prove that the graphs such as path union of cycle, generalized Petersen graph, shell, wheel, closed helm, double wheel, flower, cylinder, total graph of a path, lotus inside a circle and n-pan graph are Zk-magic graphs.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462019000200015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For any non-trivial Abelian group A under addition a graph G is said to be A-magic if there exists a labeling f : E(G) → A − {0} such that, the vertex labeling f+ defined as f+(v) = ∑f(uv) taken over all edges uv incident at v is a constant. An A-magic graph G is said to be Zk-magic graph if the group A is Zk, the group of integers modulo k and these graphs are referred as k-magic graphs. In this paper we prove that the graphs such as path union of cycle, generalized Petersen graph, shell, wheel, closed helm, double wheel, flower, cylinder, total graph of a path, lotus inside a circle and n-pan graph are Zk-magic graphs.
图的路径并集的Zk魔术标记
对于加法下的任何非平凡阿贝尔群A,如果存在标记f:E(G),则图G称为A-魔术→ A−{0},使得定义为f+(v)=∑f(uv)的顶点标记f+在入射到v的所有边uv上是一个常数。如果群A是Zk,则称A-幻图G为Zk幻图,整数群取k为模,并且这些图被称为k-幻图。本文证明了循环的路径并集、广义Petersen图、壳、轮、闭舵、双轮、花、圆柱、路径的全图、圆内莲花图和n-pan图等图是Zk幻图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信