Wei Wang, Rui Qu, Haijun Liao, Zhao Wang, Zhenyu Zhou, Zhongyuan Wang, S. Mumtaz, M. Guizani
{"title":"5G MEC-Based Intelligent Computation Offloading in Power Robotic Inspection","authors":"Wei Wang, Rui Qu, Haijun Liao, Zhao Wang, Zhenyu Zhou, Zhongyuan Wang, S. Mumtaz, M. Guizani","doi":"10.1109/MWC.003.2200350","DOIUrl":null,"url":null,"abstract":"Power robotic inspection plays a critical role in the realization of real-time visualization and perception of substation in power grid. 5G mobile edge computing (MEC) has emerged as a promising solution to provide the large bandwidth, wide connectivity, and proximate computing capabilities for the computation offloading of power robotic inspection with stringent delay requirements. This article proposes a 5G MEC-based intelligent computation offloading framework in power robotic inspection to cope with multi-dimension entity heterogeneity, environment dynamics, and inspection delay guarantee. Specifically, the proposed framework and the implementation procedures of computation offloading are firstly elaborated, and the research challenges are outlined. Then, we propose an artificial intelligence (AI)-enabled multi-dimension collaborative optimization algorithm of route planning and task offloading to address the low-latency computation offloading problem under queue stability constraint. A case study is provided to verify the superiority of delay and queue backlog performance through simulation results.","PeriodicalId":13342,"journal":{"name":"IEEE Wireless Communications","volume":"30 1","pages":"66-74"},"PeriodicalIF":10.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MWC.003.2200350","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1
Abstract
Power robotic inspection plays a critical role in the realization of real-time visualization and perception of substation in power grid. 5G mobile edge computing (MEC) has emerged as a promising solution to provide the large bandwidth, wide connectivity, and proximate computing capabilities for the computation offloading of power robotic inspection with stringent delay requirements. This article proposes a 5G MEC-based intelligent computation offloading framework in power robotic inspection to cope with multi-dimension entity heterogeneity, environment dynamics, and inspection delay guarantee. Specifically, the proposed framework and the implementation procedures of computation offloading are firstly elaborated, and the research challenges are outlined. Then, we propose an artificial intelligence (AI)-enabled multi-dimension collaborative optimization algorithm of route planning and task offloading to address the low-latency computation offloading problem under queue stability constraint. A case study is provided to verify the superiority of delay and queue backlog performance through simulation results.
期刊介绍:
IEEE Wireless Communications is tailored for professionals within the communications and networking communities. It addresses technical and policy issues associated with personalized, location-independent communications across various media and protocol layers. Encompassing both wired and wireless communications, the magazine explores the intersection of computing, the mobility of individuals, communicating devices, and personalized services.
Every issue of this interdisciplinary publication presents high-quality articles delving into the revolutionary technological advances in personal, location-independent communications, and computing. IEEE Wireless Communications provides an insightful platform for individuals engaged in these dynamic fields, offering in-depth coverage of significant developments in the realm of communication technology.