Comparative analysis of 2D simulations and isentropic equations for compressible flow in experimental nozzles

Q2 Engineering
S. Tolentino
{"title":"Comparative analysis of 2D simulations and isentropic equations for compressible flow in experimental nozzles","authors":"S. Tolentino","doi":"10.13111/2066-8201.2023.15.3.9","DOIUrl":null,"url":null,"abstract":"Experimental studies for supersonic airflow in different supersonic nozzle geometries are recurrent, and the turbulence of the flow can be reproduced with the CFD tool by applying the RANS model and suitable turbulence models. The objective of this investigation is to carry out a comparative analysis of 2D numerical simulation curves for viscous flow with averaged data against equation curves for quasi-one-dimensional isentropic flow, for three experimental supersonic nozzle geometries that are used in the laboratory, for the flow condition without the presence of shock waves in the divergent. For the numerical simulations, three computational domains were discretized with structured grids, the\nSpalart-Allmaras turbulence model was used, and the Sutherland's law equation was used for the viscosity as a function of temperature. The results of the curve trajectories for Mach number, pressure and temperature obtained with averaged data from the 2D simulations are close to the curves of the analytical and empirical equations for isentropic flow. It is concluded that the numerical error of the total temperature for the planar nozzle with 𝛼𝛼 = 11.01° and NPR = 8.945 reports 0.008%; for the conical nozzle with 𝛼𝛼 = 15° and NPR = 14.925 it reports 1%; and, finally, for the conical nozzle with 𝛼𝛼 = 4.783° and NPR = 7, it reports 0.04%.","PeriodicalId":37556,"journal":{"name":"INCAS Bulletin","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INCAS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13111/2066-8201.2023.15.3.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Experimental studies for supersonic airflow in different supersonic nozzle geometries are recurrent, and the turbulence of the flow can be reproduced with the CFD tool by applying the RANS model and suitable turbulence models. The objective of this investigation is to carry out a comparative analysis of 2D numerical simulation curves for viscous flow with averaged data against equation curves for quasi-one-dimensional isentropic flow, for three experimental supersonic nozzle geometries that are used in the laboratory, for the flow condition without the presence of shock waves in the divergent. For the numerical simulations, three computational domains were discretized with structured grids, the Spalart-Allmaras turbulence model was used, and the Sutherland's law equation was used for the viscosity as a function of temperature. The results of the curve trajectories for Mach number, pressure and temperature obtained with averaged data from the 2D simulations are close to the curves of the analytical and empirical equations for isentropic flow. It is concluded that the numerical error of the total temperature for the planar nozzle with 𝛼𝛼 = 11.01° and NPR = 8.945 reports 0.008%; for the conical nozzle with 𝛼𝛼 = 15° and NPR = 14.925 it reports 1%; and, finally, for the conical nozzle with 𝛼𝛼 = 4.783° and NPR = 7, it reports 0.04%.
实验喷嘴中可压缩流的二维模拟和等熵方程的比较分析
不同超声速喷管几何形状下超声速气流的实验研究是反复进行的,通过采用RANS模型和合适的湍流模型,可以用CFD工具再现超声速气流的湍流。本研究的目的是在实验室中使用的三种实验超音速喷嘴几何形状,在没有激波存在的情况下,对具有平均数据的粘性流动二维数值模拟曲线与准一维等熵流动方程曲线进行比较分析。数值模拟采用结构网格离散三个计算域,采用espalart - allmaras湍流模型,采用Sutherland定律方程求解黏度随温度的变化。利用二维模拟的平均数据得到的马赫数、压力和温度的曲线轨迹与等熵流动的解析方程和经验方程的曲线接近。计算结果表明:平面喷管在rdr = 11.01°、NPR = 8.945时,总温度的数值误差为0.008%;对于rdr = 15°,NPR = 14.925的锥形喷嘴,报告1%;最后,对于rdr = 4.783°,NPR = 7的锥形喷管,报告0.04%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
INCAS Bulletin
INCAS Bulletin Engineering-Aerospace Engineering
自引率
0.00%
发文量
50
审稿时长
8 weeks
期刊介绍: INCAS BULLETIN is a scientific quartely journal published by INCAS – National Institute for Aerospace Research “Elie Carafoli” (under the aegis of The Romanian Academy) Its current focus is the aerospace field, covering fluid mechanics, aerodynamics, flight theory, aeroelasticity, structures, applied control, mechatronics, experimental aerodynamics, computational methods. All submitted papers are peer-reviewed. The journal will publish reports and short research original papers of substance. Unique features distinguishing this journal: R & D reports in aerospace sciences in Romania The INCAS BULLETIN of the National Institute for Aerospace Research "Elie Carafoli" includes the following sections: 1) FULL PAPERS. -Strength of materials, elasticity, plasticity, aeroelasticity, static and dynamic analysis of structures, vibrations and impact. -Systems, mechatronics and control in aerospace. -Materials and tribology. -Kinematics and dynamics of mechanisms, friction, lubrication. -Measurement technique. -Aeroacoustics, ventilation, wind motors. -Management in Aerospace Activities. 2) TECHNICAL-SCIENTIFIC NOTES and REPORTS. Includes: case studies, technical-scientific notes and reports on published areas. 3) INCAS NEWS. Promote and emphasise INCAS technical base and achievements. 4) BOOK REVIEWS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信