Júlia Batki, J. Schnabl, Juncheng Wang, Dominik Handler, Veselin I. Andreev, Christian E. Stieger, M. Novatchkova, Lisa Lampersberger, Kotryna Kauneckaitė, W. Xie, K. Mechtler, D. Patel, J. Brennecke
{"title":"Crystal structure of dmNxf2 NTF2-like domain in complex with Nxt1/p15","authors":"Júlia Batki, J. Schnabl, Juncheng Wang, Dominik Handler, Veselin I. Andreev, Christian E. Stieger, M. Novatchkova, Lisa Lampersberger, Kotryna Kauneckaitė, W. Xie, K. Mechtler, D. Patel, J. Brennecke","doi":"10.2210/PDB6MRK/PDB","DOIUrl":null,"url":null,"abstract":"The PIWI-interacting RNA (piRNA) pathway protects genome integrity in part through establishing repressive heterochromatin at transposon loci. Silencing requires piRNA-guided targeting of nuclear PIWI proteins to nascent transposon transcripts, yet the subsequent molecular events are not understood. Here, we identify SFiNX (silencing factor interacting nuclear export variant), an interdependent protein complex required for Piwi-mediated cotranscriptional silencing in Drosophila. SFiNX consists of Nxf2–Nxt1, a gonad-specific variant of the heterodimeric messenger RNA export receptor Nxf1–Nxt1 and the Piwi-associated protein Panoramix. SFiNX mutant flies are sterile and exhibit transposon derepression because piRNA-loaded Piwi is unable to establish heterochromatin. Within SFiNX, Panoramix recruits heterochromatin effectors, while the RNA binding protein Nxf2 licenses cotranscriptional silencing. Our data reveal how Nxf2 might have evolved from an RNA transport receptor into a cotranscriptional silencing factor. Thus, NXF variants, which are abundant in metazoans, can have diverse molecular functions and might have been coopted for host genome defense more broadly. Identification of SFiNX, a complex of Nxf2–Nxt1, a variant of the mRNA export receptor Nxf1–Nxt1 and the Piwi-associated protein Panoramix, demonstrates an RNA export independent role for Nxf2 in piRNA-guided cotranscriptional transposon silencing.","PeriodicalId":18836,"journal":{"name":"Nature Structural &Molecular Biology","volume":"26 1","pages":"720-731"},"PeriodicalIF":16.8000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural &Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2210/PDB6MRK/PDB","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The PIWI-interacting RNA (piRNA) pathway protects genome integrity in part through establishing repressive heterochromatin at transposon loci. Silencing requires piRNA-guided targeting of nuclear PIWI proteins to nascent transposon transcripts, yet the subsequent molecular events are not understood. Here, we identify SFiNX (silencing factor interacting nuclear export variant), an interdependent protein complex required for Piwi-mediated cotranscriptional silencing in Drosophila. SFiNX consists of Nxf2–Nxt1, a gonad-specific variant of the heterodimeric messenger RNA export receptor Nxf1–Nxt1 and the Piwi-associated protein Panoramix. SFiNX mutant flies are sterile and exhibit transposon derepression because piRNA-loaded Piwi is unable to establish heterochromatin. Within SFiNX, Panoramix recruits heterochromatin effectors, while the RNA binding protein Nxf2 licenses cotranscriptional silencing. Our data reveal how Nxf2 might have evolved from an RNA transport receptor into a cotranscriptional silencing factor. Thus, NXF variants, which are abundant in metazoans, can have diverse molecular functions and might have been coopted for host genome defense more broadly. Identification of SFiNX, a complex of Nxf2–Nxt1, a variant of the mRNA export receptor Nxf1–Nxt1 and the Piwi-associated protein Panoramix, demonstrates an RNA export independent role for Nxf2 in piRNA-guided cotranscriptional transposon silencing.
期刊介绍:
Nature Structural & Molecular Biology is a monthly journal that focuses on the functional and mechanistic understanding of how molecular components in a biological process work together. It serves as an integrated forum for structural and molecular studies. The journal places a strong emphasis on the functional and mechanistic understanding of how molecular components in a biological process work together. Some specific areas of interest include the structure and function of proteins, nucleic acids, and other macromolecules, DNA replication, repair and recombination, transcription, regulation of transcription and translation, protein folding, processing and degradation, signal transduction, and intracellular signaling.