Computational Reproducibility: A Practical Framework for Data Curators

Sandra L. Sawchuk, Shahira Khair
{"title":"Computational Reproducibility: A Practical Framework for Data Curators","authors":"Sandra L. Sawchuk, Shahira Khair","doi":"10.7191/jeslib.2021.1206","DOIUrl":null,"url":null,"abstract":"Introduction: This paper presents concrete and actionable steps to guide researchers, data curators, and data managers in improving their understanding and practice of computational reproducibility.\n\nObjectives: Focusing on incremental progress rather than prescriptive rules, researchers and curators can build their knowledge and skills as the need arises. This paper presents a framework of incremental curation for reproducibility to support open science objectives.\n\nMethods: A computational reproducibility framework developed for the Canadian Data Curation Forum serves as the model for this approach. This framework combines learning about reproducibility with recommended steps to improving reproducibility.\n\nConclusion: Computational reproducibility leads to more transparent and accurate research. The authors warn that fear of a crisis and focus on perfection should not prevent curation that may be ‘good enough.’","PeriodicalId":90214,"journal":{"name":"Journal of escience librarianship","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of escience librarianship","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7191/jeslib.2021.1206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Introduction: This paper presents concrete and actionable steps to guide researchers, data curators, and data managers in improving their understanding and practice of computational reproducibility. Objectives: Focusing on incremental progress rather than prescriptive rules, researchers and curators can build their knowledge and skills as the need arises. This paper presents a framework of incremental curation for reproducibility to support open science objectives. Methods: A computational reproducibility framework developed for the Canadian Data Curation Forum serves as the model for this approach. This framework combines learning about reproducibility with recommended steps to improving reproducibility. Conclusion: Computational reproducibility leads to more transparent and accurate research. The authors warn that fear of a crisis and focus on perfection should not prevent curation that may be ‘good enough.’
计算再现性:数据策展器的实用框架
引言:本文提出了具体可行的步骤,以指导研究人员、数据管理者和数据管理者提高他们对计算再现性的理解和实践。目标:研究人员和策展人可以根据需要建立自己的知识和技能,专注于渐进式的进步,而不是规定性的规则。本文提出了一个可再现性的增量策展框架,以支持开放科学目标。方法:为加拿大数据整理论坛开发的计算再现性框架作为该方法的模型。该框架将对再现性的学习与提高再现性的推荐步骤相结合。结论:计算再现性使研究更加透明和准确。作者警告说,对危机的恐惧和对完美的关注不应阻止可能“足够好”的策展
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信