{"title":"Development of a cryogenic condenser and computation of its heat transfer efficiency based on liquefaction of nitrogen gas","authors":"D. R. Chowdhury, N. Chakraborty, S. Sarkar","doi":"10.2478/mme-2019-0039","DOIUrl":null,"url":null,"abstract":"Abstract The typical cryogenic condenser described here transfers the refrigerating effect from its inner side to its outer side through the wall of the condenser. The separate close refrigeration cycle operates on Reverse Stirling Cycle using hydrogen or helium as working fluid. The nitrogen gas gets liquefied when it comes in contact with the cold outer surface of the condenser. We have successfully developed a cryogenic condenser using copper of electrolytic grade for a liquefaction duty of 10 liters of liquid nitrogen per hour. Condenser effectiveness is evaluated by assembling it in Cryogenerator model, ZIF-1002 and by noting the liquefaction rate. Both the results are satisfactory. Selection of material, fabrication, testing of the condenser developed for a Cryogenerator have been described in the paper to assess its suitability for a Cryogenerator based on Reverse Stirling cycle liquefier.","PeriodicalId":53557,"journal":{"name":"Mechanics and Mechanical Engineering","volume":"23 1","pages":"291 - 296"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mme-2019-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The typical cryogenic condenser described here transfers the refrigerating effect from its inner side to its outer side through the wall of the condenser. The separate close refrigeration cycle operates on Reverse Stirling Cycle using hydrogen or helium as working fluid. The nitrogen gas gets liquefied when it comes in contact with the cold outer surface of the condenser. We have successfully developed a cryogenic condenser using copper of electrolytic grade for a liquefaction duty of 10 liters of liquid nitrogen per hour. Condenser effectiveness is evaluated by assembling it in Cryogenerator model, ZIF-1002 and by noting the liquefaction rate. Both the results are satisfactory. Selection of material, fabrication, testing of the condenser developed for a Cryogenerator have been described in the paper to assess its suitability for a Cryogenerator based on Reverse Stirling cycle liquefier.