FEATURES OF THE FORMATION OF MULTI-CHANNEL PULSE CURRENTS AND FAST-MIGRATING ELECTRIC SPARKS IN THE LAYER OF CURRENT-CONDUCTING GRANULES OF ELECTRIC-DISCHARGE INSTALLATIONS

Q3 Energy
A. Shcherba, N. Suprunovska, M. Shcherba
{"title":"FEATURES OF THE FORMATION OF MULTI-CHANNEL PULSE CURRENTS AND FAST-MIGRATING ELECTRIC SPARKS IN THE LAYER OF CURRENT-CONDUCTING GRANULES OF ELECTRIC-DISCHARGE INSTALLATIONS","authors":"A. Shcherba, N. Suprunovska, M. Shcherba","doi":"10.15407/techned2022.02.003","DOIUrl":null,"url":null,"abstract":"The paper reveals the electro-physical features of the formation of multi-channel pulse currents and fast-migrating electric sparks in the layer of current-conductive granules of electric-discharge installations (EDIs) with reservoir capacitors. Such features make it possible to increase many times the productivity of the electric-spark dispersion of metal granules during single discharge current of reservoir capacitors, which flows between the electrodes of EDIs. Theoretical substantiation and experimental confirmation of multi-channel spark discharges in the layer of conductive granules are presented. The influence of the capacitance and charge voltage of reservoir capacitors on the nature of transient processes in the discharge circuit of the EDIs is investigated. The dependence of the effective value of the active load resistance of the EDIs on the value of the pre-charge voltage of its reservoir capacitors and the value of its capacitances has been experimentally determined. It is proved that an increase in the averaged Q-factor of the discharge circuit with an increase in the charge voltage of the capacitor bank of EDI is caused by a decrease in the effective value of the active resistance of the layer of metal granules when spark-generating discharge currents flow through it. References 16, Figures 7.","PeriodicalId":38557,"journal":{"name":"Technical Electrodynamics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Electrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/techned2022.02.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 2

Abstract

The paper reveals the electro-physical features of the formation of multi-channel pulse currents and fast-migrating electric sparks in the layer of current-conductive granules of electric-discharge installations (EDIs) with reservoir capacitors. Such features make it possible to increase many times the productivity of the electric-spark dispersion of metal granules during single discharge current of reservoir capacitors, which flows between the electrodes of EDIs. Theoretical substantiation and experimental confirmation of multi-channel spark discharges in the layer of conductive granules are presented. The influence of the capacitance and charge voltage of reservoir capacitors on the nature of transient processes in the discharge circuit of the EDIs is investigated. The dependence of the effective value of the active load resistance of the EDIs on the value of the pre-charge voltage of its reservoir capacitors and the value of its capacitances has been experimentally determined. It is proved that an increase in the averaged Q-factor of the discharge circuit with an increase in the charge voltage of the capacitor bank of EDI is caused by a decrease in the effective value of the active resistance of the layer of metal granules when spark-generating discharge currents flow through it. References 16, Figures 7.
放电装置导电颗粒层中多通道脉冲电流形成及快速迁移电火花的特点
本文揭示了具有储能电容器的放电装置的导电颗粒层中形成多通道脉冲电流和快速迁移电火花的电物理特征。这样的特征使得在储能电容器的单个放电电流期间,金属颗粒的电火花分散的生产率可以提高许多倍,该放电电流在EDIs的电极之间流动。给出了导电颗粒层中多通道火花放电的理论证明和实验证实。研究了储层电容器的电容和充电电压对EDIs放电电路中瞬态过程性质的影响。EDIs的有源负载电阻的有效值对其储能电容器的预充电电压值及其电容值的依赖性已经通过实验确定。事实证明,当产生火花的放电电流流过金属颗粒层时,随着EDI电容器组充电电压的增加,放电电路的平均Q因子的增加是由金属颗粒层的有效电阻值的降低引起的。参考文献16,图7。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Technical Electrodynamics
Technical Electrodynamics Energy-Energy Engineering and Power Technology
CiteScore
1.80
自引率
0.00%
发文量
72
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信