Generalizations of the Eierlegende–Wollmilchsau

IF 1.8 2区 数学 Q1 MATHEMATICS
Paul Apisa, A. Wright
{"title":"Generalizations of the Eierlegende–Wollmilchsau","authors":"Paul Apisa, A. Wright","doi":"10.4310/cjm.2022.v10.n4.a4","DOIUrl":null,"url":null,"abstract":"We classify a natural collection of GL(2,R)-invariant subvarieties which includes loci of double covers as well as the orbits of the Eierlegende-Wollmilchsau, Ornithorynque, and Matheus-Yoccoz surfaces. This is motivated in part by a forthcoming application to another classification result, the classification of \"high rank\" invariant subvarieties. We also give new examples, which negatively resolve two questions of Mirzakhani and Wright, clarify the complex geometry of Teichmuller space, and illustrate new behavior relevant to the finite blocking problem.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2022.v10.n4.a4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We classify a natural collection of GL(2,R)-invariant subvarieties which includes loci of double covers as well as the orbits of the Eierlegende-Wollmilchsau, Ornithorynque, and Matheus-Yoccoz surfaces. This is motivated in part by a forthcoming application to another classification result, the classification of "high rank" invariant subvarieties. We also give new examples, which negatively resolve two questions of Mirzakhani and Wright, clarify the complex geometry of Teichmuller space, and illustrate new behavior relevant to the finite blocking problem.
Eierlegende-Wollmilchsau的概括
我们对GL(2,R)-不变子变体的自然集合进行了分类,其中包括双覆盖的位点以及Eierlegende-Wollmilchsau、Ornithorynque和Matheus-Yoccoz曲面的轨道。这在一定程度上是由于即将应用于另一个分类结果,即“高秩”不变子变体的分类。我们还给出了新的例子,这些例子否定地解决了Mirzakhani和Wright的两个问题,阐明了Teichmuller空间的复杂几何,并说明了与有限阻塞问题相关的新行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信