{"title":"Identifying the flap side‐edge noise contribution of a wind turbine blade section with an adaptive trailing edge","authors":"A. Suryadi, C. Jätz, J. Seume, M. Herr","doi":"10.1002/we.2786","DOIUrl":null,"url":null,"abstract":"Summary Active trailing-edge technology is a promising application for localized load alleviation of large-diameter wind turbine rotors, accomplished using one or more control surfaces in the rotor blade’s outer region. This work focuses on identifying noise contributions from the flap side-edge and the trailing edge in a laboratory condition. Measurements were conducted in the Acoustic Wind tunnel Braunschweig (AWB) at the German Aerospace Center’s (DLR) Braunschweig site. The small-scale model has a span of 1200 mm and a chord of 300 mm. The control surface, a plain flap, has a span of 400 mm and a chord length of 90 mm. Far-field noise was measured using a phased-microphone array for various flow speeds, angles of attack and flap deflection angles. For sound source identification, two noise reduction addons were installed interchangeably: trailing-edge brush and flap side-edge porous foam. Analysis of the far-field noise reveals that, while changes to the flap deflection angle alter the far-field noise spectra, the trailing-edge noise remains the predominant noise source at deflection angles − 5 ◦ and 5 ◦ . No additional noise level was observed from the flap side-edge within the measurable frequency range at these angles. The flap side-edge noise has an increased role for frequency larger than 2 kHz for the larger flap deflection angles of − 10 ◦ and 10 ◦ . Furthermore, numerical reproduction of the results will also be presented using the FMCAS (Fast Multipole Code for Acoustic Shielding) toolchain developed at DLR.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/we.2786","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Summary Active trailing-edge technology is a promising application for localized load alleviation of large-diameter wind turbine rotors, accomplished using one or more control surfaces in the rotor blade’s outer region. This work focuses on identifying noise contributions from the flap side-edge and the trailing edge in a laboratory condition. Measurements were conducted in the Acoustic Wind tunnel Braunschweig (AWB) at the German Aerospace Center’s (DLR) Braunschweig site. The small-scale model has a span of 1200 mm and a chord of 300 mm. The control surface, a plain flap, has a span of 400 mm and a chord length of 90 mm. Far-field noise was measured using a phased-microphone array for various flow speeds, angles of attack and flap deflection angles. For sound source identification, two noise reduction addons were installed interchangeably: trailing-edge brush and flap side-edge porous foam. Analysis of the far-field noise reveals that, while changes to the flap deflection angle alter the far-field noise spectra, the trailing-edge noise remains the predominant noise source at deflection angles − 5 ◦ and 5 ◦ . No additional noise level was observed from the flap side-edge within the measurable frequency range at these angles. The flap side-edge noise has an increased role for frequency larger than 2 kHz for the larger flap deflection angles of − 10 ◦ and 10 ◦ . Furthermore, numerical reproduction of the results will also be presented using the FMCAS (Fast Multipole Code for Acoustic Shielding) toolchain developed at DLR.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.