Reverse Methanogenesis and Respiration in Methanotrophic Archaea

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
P. Timmers, C. Welte, J. Koehorst, C. Plugge, M. Jetten, A. Stams
{"title":"Reverse Methanogenesis and Respiration in Methanotrophic Archaea","authors":"P. Timmers, C. Welte, J. Koehorst, C. Plugge, M. Jetten, A. Stams","doi":"10.1155/2017/1654237","DOIUrl":null,"url":null,"abstract":"Anaerobic oxidation of methane (AOM) is catalyzed by anaerobic methane-oxidizing archaea (ANME) via a reverse and modified methanogenesis pathway. Methanogens can also reverse the methanogenesis pathway to oxidize methane, but only during net methane production (i.e., “trace methane oxidation”). In turn, ANME can produce methane, but only during net methane oxidation (i.e., enzymatic back flux). Net AOM is exergonic when coupled to an external electron acceptor such as sulfate (ANME-1, ANME-2abc, and ANME-3), nitrate (ANME-2d), or metal (oxides). In this review, the reversibility of the methanogenesis pathway and essential differences between ANME and methanogens are described by combining published information with domain based (meta)genome comparison of archaeal methanotrophs and selected archaea. These differences include abundances and special structure of methyl coenzyme M reductase and of multiheme cytochromes and the presence of menaquinones or methanophenazines. ANME-2a and ANME-2d can use electron acceptors other than sulfate or nitrate for AOM, respectively. Environmental studies suggest that ANME-2d are also involved in sulfate-dependent AOM. ANME-1 seem to use a different mechanism for disposal of electrons and possibly are less versatile in electron acceptors use than ANME-2. Future research will shed light on the molecular basis of reversal of the methanogenic pathway and electron transfer in different ANME types.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2017-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/1654237","citationCount":"250","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2017/1654237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 250

Abstract

Anaerobic oxidation of methane (AOM) is catalyzed by anaerobic methane-oxidizing archaea (ANME) via a reverse and modified methanogenesis pathway. Methanogens can also reverse the methanogenesis pathway to oxidize methane, but only during net methane production (i.e., “trace methane oxidation”). In turn, ANME can produce methane, but only during net methane oxidation (i.e., enzymatic back flux). Net AOM is exergonic when coupled to an external electron acceptor such as sulfate (ANME-1, ANME-2abc, and ANME-3), nitrate (ANME-2d), or metal (oxides). In this review, the reversibility of the methanogenesis pathway and essential differences between ANME and methanogens are described by combining published information with domain based (meta)genome comparison of archaeal methanotrophs and selected archaea. These differences include abundances and special structure of methyl coenzyme M reductase and of multiheme cytochromes and the presence of menaquinones or methanophenazines. ANME-2a and ANME-2d can use electron acceptors other than sulfate or nitrate for AOM, respectively. Environmental studies suggest that ANME-2d are also involved in sulfate-dependent AOM. ANME-1 seem to use a different mechanism for disposal of electrons and possibly are less versatile in electron acceptors use than ANME-2. Future research will shed light on the molecular basis of reversal of the methanogenic pathway and electron transfer in different ANME types.
产甲烷古菌的逆向产甲烷和呼吸作用
厌氧甲烷氧化古菌(ANME)通过逆向和改良的产甲烷途径催化甲烷厌氧氧化(AOM)。产甲烷菌也可以逆转产甲烷途径来氧化甲烷,但仅在净甲烷生产过程中(即“微量甲烷氧化”)。反过来,ANME可以产生甲烷,但仅在净甲烷氧化期间(即酶促反通量)。当与外部电子受体如硫酸盐(ANME-1, ANME-2abc和ANME-3),硝酸盐(ANME-2d)或金属(氧化物)偶联时,净AOM是exergonic的。本文结合已发表的信息,结合古菌产甲烷菌和选定的古菌的结构域(meta)基因组比较,描述了ANME和产甲烷菌之间甲烷生成途径的可逆性和本质差异。这些差异包括甲基辅酶M还原酶和多血红素细胞色素的丰度和特殊结构,以及甲基萘醌或甲基苯丙嗪的存在。ANME-2a和ANME-2d可以分别使用硫酸盐和硝酸盐以外的电子受体来接收AOM。环境研究表明,ANME-2d也参与硫酸盐依赖性AOM。ANME-1似乎使用一种不同的机制来处理电子,并且在电子受体的使用上可能不如ANME-2通用。未来的研究将进一步揭示不同类型ANME产甲烷途径逆转和电子转移的分子基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信