Efficiency of acid digestion procedures for geochemical analysis of tungsten mining wastes

IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Zheng Han, M. Edraki, A. Nguyen, Marietjie Mostert
{"title":"Efficiency of acid digestion procedures for geochemical analysis of tungsten mining wastes","authors":"Zheng Han, M. Edraki, A. Nguyen, Marietjie Mostert","doi":"10.1144/geochem2021-034","DOIUrl":null,"url":null,"abstract":"There is an increasing global demand for tungsten, which is a critical element used in various industries. There are millions of tons of current and legacy mineral processing tungsten tailings worldwide that can potentially contaminate the environment and pose human health risks. These tailings could also become valuable resources if we thoroughly characterize their geochemical composition. In this study, an innovative method was developed to achieve the complete digestion of tungsten tailings. We tested three different digestion methods (hotplate digestion, bomb digestion and ColdBlockTM digestion) and compared the results. Additionally, an alkali fusion for major element analysis was applied and tested. The results showed that alkali fusion is the best method for major element analysis, while bomb digestion is best for tungsten and trace element analysis, although volatile chlorite loss was also observed. The hot plate digestion method was not recommended, owing to poor recovery of trace elements compared to the bomb digestion method. The quicker and safer ColdBlockTM digestion method can be used for bismuth, molybdenum, and several rare-earth element analyses, as indicated by their recovery being close to that from the bomb digestion method.","PeriodicalId":55114,"journal":{"name":"Geochemistry-Exploration Environment Analysis","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry-Exploration Environment Analysis","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/geochem2021-034","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 4

Abstract

There is an increasing global demand for tungsten, which is a critical element used in various industries. There are millions of tons of current and legacy mineral processing tungsten tailings worldwide that can potentially contaminate the environment and pose human health risks. These tailings could also become valuable resources if we thoroughly characterize their geochemical composition. In this study, an innovative method was developed to achieve the complete digestion of tungsten tailings. We tested three different digestion methods (hotplate digestion, bomb digestion and ColdBlockTM digestion) and compared the results. Additionally, an alkali fusion for major element analysis was applied and tested. The results showed that alkali fusion is the best method for major element analysis, while bomb digestion is best for tungsten and trace element analysis, although volatile chlorite loss was also observed. The hot plate digestion method was not recommended, owing to poor recovery of trace elements compared to the bomb digestion method. The quicker and safer ColdBlockTM digestion method can be used for bismuth, molybdenum, and several rare-earth element analyses, as indicated by their recovery being close to that from the bomb digestion method.
酸消化法对钨矿废物地球化学分析的效率研究
钨是各种工业中使用的关键元素,全球对钨的需求不断增加。全世界有数百万吨当前和遗留的矿物加工钨尾矿可能污染环境并对人类健康构成威胁。如果我们对这些尾矿的地球化学成分进行彻底的表征,它们也可能成为宝贵的资源。本研究开发了一种实现钨尾矿完全溶出的创新方法。我们测试了三种不同的消化方法(热板消化、炸弹消化和ColdBlockTM消化),并比较了结果。此外,还应用了碱熔法进行了主元素分析和试验。结果表明,碱熔法是分析主要元素的最佳方法,而弹溶法是分析钨和微量元素的最佳方法,但也观察到挥发性绿泥石的损失。热板消解法与弹消解法相比,痕量元素的回收率较低,因此不推荐使用热板消解法。更快、更安全的ColdBlockTM溶出法可用于铋、钼和几种稀土元素的分析,其回收率接近炸弹溶出法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochemistry-Exploration Environment Analysis
Geochemistry-Exploration Environment Analysis 地学-地球化学与地球物理
CiteScore
3.60
自引率
16.70%
发文量
30
审稿时长
1 months
期刊介绍: Geochemistry: Exploration, Environment, Analysis (GEEA) is a co-owned journal of the Geological Society of London and the Association of Applied Geochemists (AAG). GEEA focuses on mineral exploration using geochemistry; related fields also covered include geoanalysis, the development of methods and techniques used to analyse geochemical materials such as rocks, soils, sediments, waters and vegetation, and environmental issues associated with mining and source apportionment. GEEA is well-known for its thematic sets on hot topics and regularly publishes papers from the biennial International Applied Geochemistry Symposium (IAGS). Papers that seek to integrate geological, geochemical and geophysical methods of exploration are particularly welcome, as are those that concern geochemical mapping and those that comprise case histories. Given the many links between exploration and environmental geochemistry, the journal encourages the exchange of concepts and data; in particular, to differentiate various sources of elements. GEEA publishes research articles; discussion papers; book reviews; editorial content and thematic sets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信