{"title":"Sparse estimation within Pearson's system, with an application to financial market risk","authors":"Michelle Carey, Christian Genest, James O. Ramsay","doi":"10.1002/cjs.11754","DOIUrl":null,"url":null,"abstract":"<p>Pearson's system is a rich class of models that includes many classical univariate distributions. It comprises all continuous densities whose logarithmic derivative can be expressed as a ratio of quadratic polynomials governed by a vector <math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation>$$ \\beta $$</annotation>\n </semantics></math> of coefficients. The estimation of a Pearson density is challenging, as small variations in <math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation>$$ \\beta $$</annotation>\n </semantics></math> can induce wild changes in the shape of the corresponding density <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>β</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {f}_{\\beta } $$</annotation>\n </semantics></math>. The authors show how to estimate <math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation>$$ \\beta $$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>β</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {f}_{\\beta } $$</annotation>\n </semantics></math> effectively through a penalized likelihood procedure involving differential regularization. The approach combines a penalized regression method and a profiled estimation technique. Simulations and an illustration with S&P 500 data suggest that the proposed method can improve market risk assessment substantially through value-at-risk and expected shortfall estimates that outperform those currently used by financial institutions and regulators.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11754","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Pearson's system is a rich class of models that includes many classical univariate distributions. It comprises all continuous densities whose logarithmic derivative can be expressed as a ratio of quadratic polynomials governed by a vector of coefficients. The estimation of a Pearson density is challenging, as small variations in can induce wild changes in the shape of the corresponding density . The authors show how to estimate and effectively through a penalized likelihood procedure involving differential regularization. The approach combines a penalized regression method and a profiled estimation technique. Simulations and an illustration with S&P 500 data suggest that the proposed method can improve market risk assessment substantially through value-at-risk and expected shortfall estimates that outperform those currently used by financial institutions and regulators.