Sparse estimation within Pearson's system, with an application to financial market risk

Pub Date : 2023-01-06 DOI:10.1002/cjs.11754
Michelle Carey, Christian Genest, James O. Ramsay
{"title":"Sparse estimation within Pearson's system, with an application to financial market risk","authors":"Michelle Carey,&nbsp;Christian Genest,&nbsp;James O. Ramsay","doi":"10.1002/cjs.11754","DOIUrl":null,"url":null,"abstract":"<p>Pearson's system is a rich class of models that includes many classical univariate distributions. It comprises all continuous densities whose logarithmic derivative can be expressed as a ratio of quadratic polynomials governed by a vector <math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation>$$ \\beta $$</annotation>\n </semantics></math> of coefficients. The estimation of a Pearson density is challenging, as small variations in <math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation>$$ \\beta $$</annotation>\n </semantics></math> can induce wild changes in the shape of the corresponding density <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>β</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {f}_{\\beta } $$</annotation>\n </semantics></math>. The authors show how to estimate <math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation>$$ \\beta $$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>β</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {f}_{\\beta } $$</annotation>\n </semantics></math> effectively through a penalized likelihood procedure involving differential regularization. The approach combines a penalized regression method and a profiled estimation technique. Simulations and an illustration with S&amp;P 500 data suggest that the proposed method can improve market risk assessment substantially through value-at-risk and expected shortfall estimates that outperform those currently used by financial institutions and regulators.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11754","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Pearson's system is a rich class of models that includes many classical univariate distributions. It comprises all continuous densities whose logarithmic derivative can be expressed as a ratio of quadratic polynomials governed by a vector β $$ \beta $$ of coefficients. The estimation of a Pearson density is challenging, as small variations in β $$ \beta $$ can induce wild changes in the shape of the corresponding density f β $$ {f}_{\beta } $$ . The authors show how to estimate β $$ \beta $$ and f β $$ {f}_{\beta } $$ effectively through a penalized likelihood procedure involving differential regularization. The approach combines a penalized regression method and a profiled estimation technique. Simulations and an illustration with S&P 500 data suggest that the proposed method can improve market risk assessment substantially through value-at-risk and expected shortfall estimates that outperform those currently used by financial institutions and regulators.

Abstract Image

分享
查看原文
皮尔逊系统中的稀疏估计,及其在金融市场风险中的应用
皮尔逊系统是一类丰富的模型,包括许多经典的单变量分布。它包括所有连续密度,其对数导数可以表示为由系数的向量β$\β$$控制的二次多项式的比率。皮尔逊密度的估计具有挑战性,因为β$$\β$$的微小变化可能会导致相应密度fβ$$形状的剧烈变化{f}_{\beta}$$。作者展示了如何估计β$$\beta$$和fβ$${f}_{\beta}$$通过涉及微分正则化的惩罚似然程序有效地。该方法结合了惩罚回归方法和轮廓估计技术。模拟和标准普尔500指数数据的说明表明,所提出的方法可以通过风险价值和预期缺口估计大大改进市场风险评估,这些估计优于金融机构和监管机构目前使用的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信