{"title":"On negative results concerning weak-Hardy means","authors":"P. Pasteczka","doi":"10.4064/cm8749-4-2022","DOIUrl":null,"url":null,"abstract":". We establish the test which allows to show that a mean does not admit a weak-Hardy property. As a result we prove that Hardy and weak-Hardy properties are equivalent in the class of homogeneous, symmetric, repetition invariant, and Jensen concave mean on R + . More precisely, for every mean M : S ∞ n =1 R n + → R as above, the inequality M ( a 1 ) + M a 1 , a 2 ) + · · · < ∞ holds for all a ∈ ℓ 1 ( R + ) if and only if there exists a positive, real constant C (depending only on M ) such that ) for every sequence a ∈ ℓ 1 ( R + ) .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8749-4-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
. We establish the test which allows to show that a mean does not admit a weak-Hardy property. As a result we prove that Hardy and weak-Hardy properties are equivalent in the class of homogeneous, symmetric, repetition invariant, and Jensen concave mean on R + . More precisely, for every mean M : S ∞ n =1 R n + → R as above, the inequality M ( a 1 ) + M a 1 , a 2 ) + · · · < ∞ holds for all a ∈ ℓ 1 ( R + ) if and only if there exists a positive, real constant C (depending only on M ) such that ) for every sequence a ∈ ℓ 1 ( R + ) .