Tara Abrishami, M. Chudnovsky, Sepehr Hajebi, S. Spirkl
{"title":"Induced subgraphs and tree decompositions III. Three-path-configurations and logarithmic treewidth","authors":"Tara Abrishami, M. Chudnovsky, Sepehr Hajebi, S. Spirkl","doi":"10.19086/aic.2022.6","DOIUrl":null,"url":null,"abstract":"A _theta_ is a graph consisting of two non-adjacent vertices and three internally disjoint paths between them, each of length at least two. For a family $\\mathcal{H}$ of graphs, we say a graph $G$ is $\\mathcal{H}$-_free_ if no induced subgraph of $G$ is isomorphic to a member of $\\mathcal{H}$. We prove a conjecture of Sintiari and Trotignon, that there exists an absolute constant $c$ for which every (theta, triangle)-free graph $G$ has treewidth at most $c\\log (|V(G)|)$. A construction by Sintiari and Trotignon shows that this bound is asymptotically best possible, and (theta, triangle)-free graphs comprise the first known hereditary class of graphs with arbitrarily large yet logarithmic treewidth.\n\nOur main result is in fact a generalization of the above conjecture, that treewidth is at most logarithmic in $|V(G)|$ for every graph $G$ excluding the so-called _three-path-configurations_ as well as a fixed complete graph. It follows that several NP-hard problems such as Stable Set, Vertex Cover, Dominating Set and $k$-Coloring (for fixed $k$) admit polynomial time algorithms in graphs excluding the three-path-configurations and a fixed complete graph.","PeriodicalId":36338,"journal":{"name":"Advances in Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19086/aic.2022.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 19
Abstract
A _theta_ is a graph consisting of two non-adjacent vertices and three internally disjoint paths between them, each of length at least two. For a family $\mathcal{H}$ of graphs, we say a graph $G$ is $\mathcal{H}$-_free_ if no induced subgraph of $G$ is isomorphic to a member of $\mathcal{H}$. We prove a conjecture of Sintiari and Trotignon, that there exists an absolute constant $c$ for which every (theta, triangle)-free graph $G$ has treewidth at most $c\log (|V(G)|)$. A construction by Sintiari and Trotignon shows that this bound is asymptotically best possible, and (theta, triangle)-free graphs comprise the first known hereditary class of graphs with arbitrarily large yet logarithmic treewidth.
Our main result is in fact a generalization of the above conjecture, that treewidth is at most logarithmic in $|V(G)|$ for every graph $G$ excluding the so-called _three-path-configurations_ as well as a fixed complete graph. It follows that several NP-hard problems such as Stable Set, Vertex Cover, Dominating Set and $k$-Coloring (for fixed $k$) admit polynomial time algorithms in graphs excluding the three-path-configurations and a fixed complete graph.