On derivable trees

IF 0.6 Q3 MATHEMATICS
M. Hamidi, A. Saeid
{"title":"On derivable trees","authors":"M. Hamidi, A. Saeid","doi":"10.22108/TOC.2019.113737.1601","DOIUrl":null,"url":null,"abstract":"This paper defines the concept of partitioned hypergraphs‎, ‎and enumerates the number of these hypergraphs and discrete complete hypergraphs‎. ‎A positive equivalence relation is defined on hypergraphs‎, ‎this relation establishes a connection between hypergraphs and graphs‎. ‎Moreover‎, ‎we define the concept of (extended) derivable graph‎. ‎Then a connection between hypergraphs and (extended) derivable graphs was investigated‎. ‎Via the positive equivalence relation on hypergraphs‎, ‎we show that some special trees are derivable graph and complete graphs are self derivable graphs‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"8 1","pages":"21-43"},"PeriodicalIF":0.6000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2019.113737.1601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

This paper defines the concept of partitioned hypergraphs‎, ‎and enumerates the number of these hypergraphs and discrete complete hypergraphs‎. ‎A positive equivalence relation is defined on hypergraphs‎, ‎this relation establishes a connection between hypergraphs and graphs‎. ‎Moreover‎, ‎we define the concept of (extended) derivable graph‎. ‎Then a connection between hypergraphs and (extended) derivable graphs was investigated‎. ‎Via the positive equivalence relation on hypergraphs‎, ‎we show that some special trees are derivable graph and complete graphs are self derivable graphs‎.
关于可导树
本文定义了分区超图的概念,并列举了这些超图和离散完全超图的数量。在超图上定义了一个正等价关系,这个关系建立了超图与图之间的联系。此外,我们定义了(扩展的)可导图的概念。然后研究了超图与(扩展)可导图之间的联系。通过超图上的正等价关系,证明了一些特殊树是可导图,完全图是自可导图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信