A control strategy for the Sterile Insect Technique using exponentially decreasing releases to avoid the hair-trigger effect

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
N. Nguyen, Alexis L'eculier
{"title":"A control strategy for the Sterile Insect Technique using exponentially decreasing releases to avoid the hair-trigger effect","authors":"N. Nguyen, Alexis L'eculier","doi":"10.1051/mmnp/2023018","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a control strategy for applying the Sterile Insect Technique (SIT) to eliminate the population of Aedes mosquitoes which are vectors of various deadly diseases like dengue, zika, chikungunya... in a wide area. We use a system of reaction-diffusion equations to model the mosquito population and study the effect of releasing sterile males. Without any human intervention, and due to the so-called hair-trigger effect, the introduction of only a few individuals (eggs or fertilized females) can lead to the invasion of mosquitoes in the whole region after some time. To avoid this phenomenon, our strategy is to keep releasing a small number of sterile males in the treated zone and move this release forward with a negative forcing speed c to push back the invasive front of wild mosquitoes. By using traveling wave analysis, we show in the present paper that the strategy succeeds in repulsing the population while consuming a finite amount of mosquitoes in any finite time interval even though we treat a moving half-space. Moreover, we succeed in constructing a 'forced' traveling wave for our system moving at the same speed as the releases. We also provide some numerical illustrations for our results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2023018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a control strategy for applying the Sterile Insect Technique (SIT) to eliminate the population of Aedes mosquitoes which are vectors of various deadly diseases like dengue, zika, chikungunya... in a wide area. We use a system of reaction-diffusion equations to model the mosquito population and study the effect of releasing sterile males. Without any human intervention, and due to the so-called hair-trigger effect, the introduction of only a few individuals (eggs or fertilized females) can lead to the invasion of mosquitoes in the whole region after some time. To avoid this phenomenon, our strategy is to keep releasing a small number of sterile males in the treated zone and move this release forward with a negative forcing speed c to push back the invasive front of wild mosquitoes. By using traveling wave analysis, we show in the present paper that the strategy succeeds in repulsing the population while consuming a finite amount of mosquitoes in any finite time interval even though we treat a moving half-space. Moreover, we succeed in constructing a 'forced' traveling wave for our system moving at the same speed as the releases. We also provide some numerical illustrations for our results.
利用指数递减释放避免毛触发效应的无菌昆虫技术的控制策略
本文介绍了一种应用无菌昆虫技术(SIT)消灭伊蚊种群的控制策略,伊蚊是登革热、寨卡病毒、基孔肯雅病毒等各种致命疾病的媒介。。。在广阔的区域内。我们使用反应扩散方程组来模拟蚊子种群,并研究释放不育雄性的效果。在没有任何人为干预的情况下,由于所谓的毛发触发效应,只引入少数个体(卵子或受精雌性),一段时间后就会导致蚊子入侵整个地区。为了避免这种现象,我们的策略是在治疗区继续释放少量不育雄性蚊子,并以负的强迫速度c向前释放,以击退野生蚊子的入侵前沿。通过使用行波分析,我们在本文中表明,即使我们处理的是移动的半空间,该策略在任何有限的时间间隔内都能成功地击退种群,同时消耗有限数量的蚊子。此外,我们成功地构建了一个“强迫”行波,使我们的系统以与释放相同的速度移动。我们还为我们的结果提供了一些数值说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信