Sajad Vafaeenezhad, Amir Reza Hanifi, Mark Cuglietta, Mohtada Sadrzadeh, Partha Sarkar, Thomas H. Etsell
{"title":"Tailoring the solid oxide fuel cell anode support composition and microstructure for low-temperature applications","authors":"Sajad Vafaeenezhad, Amir Reza Hanifi, Mark Cuglietta, Mohtada Sadrzadeh, Partha Sarkar, Thomas H. Etsell","doi":"10.1002/fuce.202200069","DOIUrl":null,"url":null,"abstract":"<p>In this research, the performance of a tubular fuel cell based on a nickel oxide–yttria-stabilized zirconia (Ni-YSZ) anode support containing 90 wt% NiO ≈ 82 vol.% of Ni (Ni82) is compared with a cell containing the conventional Ni-YSZ support with 50 vol.% Ni. A Ni-YSZ buffer layer with a tailored microstructure was added to the Ni82 support layer to provide intermediate porosity and to reduce the thermal expansion mismatch with the anode functional layer. Both cells were tested using infiltrated Nd<sub>2</sub>NiO<sub>4+δ</sub> cathodes. High peak power densities of 790 and 478 mW/cm<sup>2</sup> were achieved at 600 and 550°C, respectively, for the Ni82 cell which was 25% and 87% higher than the performances for the conventional cell at respective temperatures. In addition, no degradation was found during four redox cycles at 550°C, making this support an attractive candidate for low-temperature solid oxide fuel cell applications.</p>","PeriodicalId":91482,"journal":{"name":"","volume":"23 2","pages":"202-213"},"PeriodicalIF":0.0,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202200069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this research, the performance of a tubular fuel cell based on a nickel oxide–yttria-stabilized zirconia (Ni-YSZ) anode support containing 90 wt% NiO ≈ 82 vol.% of Ni (Ni82) is compared with a cell containing the conventional Ni-YSZ support with 50 vol.% Ni. A Ni-YSZ buffer layer with a tailored microstructure was added to the Ni82 support layer to provide intermediate porosity and to reduce the thermal expansion mismatch with the anode functional layer. Both cells were tested using infiltrated Nd2NiO4+δ cathodes. High peak power densities of 790 and 478 mW/cm2 were achieved at 600 and 550°C, respectively, for the Ni82 cell which was 25% and 87% higher than the performances for the conventional cell at respective temperatures. In addition, no degradation was found during four redox cycles at 550°C, making this support an attractive candidate for low-temperature solid oxide fuel cell applications.