Longlong Li , Mark Khait , Denis Voskov , Kirill M. Terekhov , Ahmad Abushaikha
{"title":"Applying Massively Parallel Interface for MPFA scheme with advanced linearization for fluid flow in porous media","authors":"Longlong Li , Mark Khait , Denis Voskov , Kirill M. Terekhov , Ahmad Abushaikha","doi":"10.1016/j.petrol.2022.111190","DOIUrl":null,"url":null,"abstract":"<div><p><span>We apply Massively Parallel Interface for MPFA-O scheme with state-of-the-art Operator-Based Linearization (OBL) approach for multiphase flow in porous media. The implementation of MPFA-O scheme enhances the modelling capabilities for non-</span><strong>K</strong><span><span><span>-orthogonal mesh. A fully implicit scheme is applied to guarantee the stability of solutions when a mass-based formulation is involved to keep the flexibility of the framework for general-purpose </span>reservoir simulation. As the MPFA-O introduces more non-zeros elements in the </span>Jacobian matrix than the traditional TPFA, massively parallel computations via Message Passing Interface (MPI) in this work help to guarantee competitive computational efficiency for high-fidelity geological models. Concerning the Jacobian assembly hassle, we apply the OBL approach which introduces operators combining the fluid and rock properties in the conservation equations and discretizes the operators in the physical parameter space. By computing values and derivatives of the operators via a multilinear interpolation, the assembly of Jacobian matrix and residual vector could be drastically simplified. Another benefit of the OBL is that by only evaluating operator values on the predefined nodes in the physical parameter space, the overhead related to complex phase behavior and property evaluation is significantly reduced. In the end, we present several benchmark cases to rigorously demonstrate the accuracy, convergence, and robustness of the framework and two challenging field-scale cases to further prove its computing performance and parallel scalability.</span></p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":"220 ","pages":"Article 111190"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522010427","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
We apply Massively Parallel Interface for MPFA-O scheme with state-of-the-art Operator-Based Linearization (OBL) approach for multiphase flow in porous media. The implementation of MPFA-O scheme enhances the modelling capabilities for non-K-orthogonal mesh. A fully implicit scheme is applied to guarantee the stability of solutions when a mass-based formulation is involved to keep the flexibility of the framework for general-purpose reservoir simulation. As the MPFA-O introduces more non-zeros elements in the Jacobian matrix than the traditional TPFA, massively parallel computations via Message Passing Interface (MPI) in this work help to guarantee competitive computational efficiency for high-fidelity geological models. Concerning the Jacobian assembly hassle, we apply the OBL approach which introduces operators combining the fluid and rock properties in the conservation equations and discretizes the operators in the physical parameter space. By computing values and derivatives of the operators via a multilinear interpolation, the assembly of Jacobian matrix and residual vector could be drastically simplified. Another benefit of the OBL is that by only evaluating operator values on the predefined nodes in the physical parameter space, the overhead related to complex phase behavior and property evaluation is significantly reduced. In the end, we present several benchmark cases to rigorously demonstrate the accuracy, convergence, and robustness of the framework and two challenging field-scale cases to further prove its computing performance and parallel scalability.
期刊介绍:
The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership.
The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.