{"title":"Some operator inequalities for Hermitian Banach $*$-algebras","authors":"H. Najafi","doi":"10.7146/math.scand.a-115624","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the Kubo-Ando theory from operator means on C∗-algebras to a Hermitian Banach ∗-algebra A with a continuous involution. For this purpose, we show that if a and b are self-adjoint elements in A with spectra in an interval J such that a≤b, then f(a)≤f(b) for every operator monotone function f on J, where f(a) and f(b) are defined by the Riesz-Dunford integral. Moreover, we show that some convexity properties of the usual operator convex functions are preserved in the setting of Hermitian Banach ∗-algebras. In particular, Jensen's operator inequality is presented in these cases.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-115624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we extend the Kubo-Ando theory from operator means on C∗-algebras to a Hermitian Banach ∗-algebra A with a continuous involution. For this purpose, we show that if a and b are self-adjoint elements in A with spectra in an interval J such that a≤b, then f(a)≤f(b) for every operator monotone function f on J, where f(a) and f(b) are defined by the Riesz-Dunford integral. Moreover, we show that some convexity properties of the usual operator convex functions are preserved in the setting of Hermitian Banach ∗-algebras. In particular, Jensen's operator inequality is presented in these cases.