FRACTIONAL TYPE MARCINKIEWICZ INTEGRAL AND ITS COMMUTATOR ON NONHOMOGENEOUS SPACES

Pub Date : 2022-06-03 DOI:10.1017/nmj.2022.6
G. Lu
{"title":"FRACTIONAL TYPE MARCINKIEWICZ INTEGRAL AND ITS COMMUTATOR ON NONHOMOGENEOUS SPACES","authors":"G. Lu","doi":"10.1017/nmj.2022.6","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to establish the boundedness of fractional type Marcinkiewicz integral \n$\\mathcal {M}_{\\iota ,\\rho ,m}$\n and its commutator \n$\\mathcal {M}_{\\iota ,\\rho ,m,b}$\n on generalized Morrey spaces and on Morrey spaces over nonhomogeneous metric measure spaces which satisfy the upper doubling and geometrically doubling conditions. Under the assumption that the dominating function \n$\\lambda $\n satisfies \n$\\epsilon $\n -weak reverse doubling condition, the author proves that \n$\\mathcal {M}_{\\iota ,\\rho ,m}$\n is bounded on generalized Morrey space \n$L^{p,\\phi }(\\mu )$\n and on Morrey space \n$M^{p}_{q}(\\mu )$\n . Furthermore, the boundedness of the commutator \n$\\mathcal {M}_{\\iota ,\\rho ,m,b}$\n generated by \n$\\mathcal {M}_{\\iota ,\\rho ,m}$\n and regularized \n$\\mathrm {BMO}$\n space with discrete coefficient (= \n$\\widetilde {\\mathrm {RBMO}}(\\mu )$\n ) on space \n$L^{p,\\phi }(\\mu )$\n and on space \n$M^{p}_{q}(\\mu )$\n is also obtained.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract The aim of this paper is to establish the boundedness of fractional type Marcinkiewicz integral $\mathcal {M}_{\iota ,\rho ,m}$ and its commutator $\mathcal {M}_{\iota ,\rho ,m,b}$ on generalized Morrey spaces and on Morrey spaces over nonhomogeneous metric measure spaces which satisfy the upper doubling and geometrically doubling conditions. Under the assumption that the dominating function $\lambda $ satisfies $\epsilon $ -weak reverse doubling condition, the author proves that $\mathcal {M}_{\iota ,\rho ,m}$ is bounded on generalized Morrey space $L^{p,\phi }(\mu )$ and on Morrey space $M^{p}_{q}(\mu )$ . Furthermore, the boundedness of the commutator $\mathcal {M}_{\iota ,\rho ,m,b}$ generated by $\mathcal {M}_{\iota ,\rho ,m}$ and regularized $\mathrm {BMO}$ space with discrete coefficient (= $\widetilde {\mathrm {RBMO}}(\mu )$ ) on space $L^{p,\phi }(\mu )$ and on space $M^{p}_{q}(\mu )$ is also obtained.
分享
查看原文
非齐次空间上的分式MARCINKIEWICZ积分及其交换子
摘要本文的目的是建立分数型Marcinkiewicz积分$\mathcal的有界性{M}_{\iota,\rho,m}$及其换向器$\mathcal{M}_{\iota,\rho,m,b}$在满足上加倍和几何加倍条件的广义Morrey空间和非齐次度量测度空间上的Morrey空间上。在主函数$\lambda$满足$\epsilon$弱反加倍条件的假设下,作者证明了$\mathcal{M}_{\iota,\rho,m}$在广义Morrey空间$L^{p,\phi}(\mu)$上和Morrey空间$m上有界^{p}_{q} (\mu)$。此外,交换子$\mathcal的有界性{M}_{\iota,\rho,m,b}$由$\mathcal生成{M}_{\iota,\rho,m}$和空间$L^{p,\phi}(\mu)$上具有离散系数的正则化$\mathrm{BMO}$空间^{p}_{q} (\mu)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信