On inverse sum indeg energy of graphs

IF 0.8 Q2 MATHEMATICS
Fareeha Jamal, Muhammad Imran, B. Rather
{"title":"On inverse sum indeg energy of graphs","authors":"Fareeha Jamal, Muhammad Imran, B. Rather","doi":"10.1515/spma-2022-0175","DOIUrl":null,"url":null,"abstract":"Abstract For a simple graph with vertex set { v 1 , v 2 , … , v n } \\left\\{{v}_{1},{v}_{2},\\ldots ,{v}_{n}\\right\\} and degree sequence d v i i = 1 , 2 , … , n {d}_{{v}_{i}}\\hspace{0.33em}i=1,2,\\ldots ,n , the inverse sum indeg matrix (ISI matrix) A ISI ( G ) = ( a i j ) {A}_{{\\rm{ISI}}}\\left(G)=\\left({a}_{ij}) of G G is a square matrix of order n , n, where a i j = d v i d v j d v i + d v j , {a}_{ij}=\\frac{{d}_{{v}_{i}}{d}_{{v}_{j}}}{{d}_{{v}_{i}}+{d}_{{v}_{j}}}, if v i {v}_{i} is adjacent to v j {v}_{j} and 0, otherwise. The multiset of eigenvalues τ 1 ≥ τ 2 ≥ ⋯ ≥ τ n {\\tau }_{1}\\ge {\\tau }_{2}\\hspace{0.33em}\\ge \\cdots \\ge {\\tau }_{n} of A ISI ( G ) {A}_{{\\rm{ISI}}}\\left(G) is known as the ISI spectrum of G G . The ISI energy of G G is the sum ∑ i = 1 n ∣ τ i ∣ \\mathop{\\sum }\\limits_{i=1}^{n}| {\\tau }_{i}| of the absolute ISI eigenvalues of G . G. In this article, we give some properties of the ISI eigenvalues of graphs. Also, we obtain the bounds of the ISI eigenvalues and characterize the extremal graphs. Furthermore, we construct pairs of ISI equienergetic graphs for each n ≥ 9 n\\ge 9 .","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2022-0175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract For a simple graph with vertex set { v 1 , v 2 , … , v n } \left\{{v}_{1},{v}_{2},\ldots ,{v}_{n}\right\} and degree sequence d v i i = 1 , 2 , … , n {d}_{{v}_{i}}\hspace{0.33em}i=1,2,\ldots ,n , the inverse sum indeg matrix (ISI matrix) A ISI ( G ) = ( a i j ) {A}_{{\rm{ISI}}}\left(G)=\left({a}_{ij}) of G G is a square matrix of order n , n, where a i j = d v i d v j d v i + d v j , {a}_{ij}=\frac{{d}_{{v}_{i}}{d}_{{v}_{j}}}{{d}_{{v}_{i}}+{d}_{{v}_{j}}}, if v i {v}_{i} is adjacent to v j {v}_{j} and 0, otherwise. The multiset of eigenvalues τ 1 ≥ τ 2 ≥ ⋯ ≥ τ n {\tau }_{1}\ge {\tau }_{2}\hspace{0.33em}\ge \cdots \ge {\tau }_{n} of A ISI ( G ) {A}_{{\rm{ISI}}}\left(G) is known as the ISI spectrum of G G . The ISI energy of G G is the sum ∑ i = 1 n ∣ τ i ∣ \mathop{\sum }\limits_{i=1}^{n}| {\tau }_{i}| of the absolute ISI eigenvalues of G . G. In this article, we give some properties of the ISI eigenvalues of graphs. Also, we obtain the bounds of the ISI eigenvalues and characterize the extremal graphs. Furthermore, we construct pairs of ISI equienergetic graphs for each n ≥ 9 n\ge 9 .
图的逆和指数能
摘要对于顶点集为{V1,V2,…,Vn}的简单图\{{v}_{1} ,{v}_{2} ,\ldots,{v}_{n} \ right \}和度序列d v i i=1,2,…,n{d}_{{v}_{i} }\ hspace{0.33em}i=1,2,\ldots,n,逆和indeg矩阵(ISI矩阵)A ISI(G)=(A i j){A}_{\rm{ISI}}\left(G)=\left({a}_{ij})是n阶的方阵,其中a i j=d v i d v j d v i+d v j,{a}_{ij}=\frac{{d}_{{v}_{i} }{d}_{{v}_{j} }}{{d}_{{v}_{i} }+{d}_{{v}_{j} },如果v i{v}_{i} 与vj相邻{v}_{j} 否则为0。ISI(G)的特征值τ1≥τ2≥…≥τn{A}_{\rm{ISI}}}\left(G)被称为G的ISI谱。G G的ISI能量是G的绝对ISI本征值的总和∑i=1nÜτiÜ\mathop{\sum}\limits_{i=1}^{n}|{\tau}_{i}|。G.本文给出了图的ISI特征值的一些性质。此外,我们还得到了ISI特征值的界,并刻画了极值图。此外,我们为每个n≥9n\ge9构造了一对ISI等能图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Special Matrices
Special Matrices MATHEMATICS-
CiteScore
1.10
自引率
20.00%
发文量
14
审稿时长
8 weeks
期刊介绍: Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信