M. Quercio, Francesco Galbusera, A. Canova, A. Demir, G. Gruosso, B. Previtali
{"title":"Electromagnetic shielding properties of LPBF produced Fe2.9wt.%Si alloy","authors":"M. Quercio, Francesco Galbusera, A. Canova, A. Demir, G. Gruosso, B. Previtali","doi":"10.1088/2515-7655/ace92f","DOIUrl":null,"url":null,"abstract":"Ferromagnetic materials are used in various applications such as rotating electrical machines, wind turbines, electromagnetic shielding, transformers, and electromagnets. Compared to hard magnetic materials, their hysteresis cycles are featured by low values of coercive magnetic field and high permeability. The application of additive manufacturing to ferromagnetic materials is gaining more and more attraction. Indeed, thanks to a wider geometrical freedom, new topological optimized shapes for stator/rotor shapes can be addressed to enhance electric machines performances. However, the properties of the laser powder bed fusion (LPBF) processed alloy compared to conventionally produced counterpart must be still addressed. Accordingly, this paper presents for the first time the use of the LPBF for the manufacturing of Fe2.9wt.%Si electromagnetic shields. The process parameter selection material microstructure and the magnetic shielding factor are characterized.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/ace92f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
Ferromagnetic materials are used in various applications such as rotating electrical machines, wind turbines, electromagnetic shielding, transformers, and electromagnets. Compared to hard magnetic materials, their hysteresis cycles are featured by low values of coercive magnetic field and high permeability. The application of additive manufacturing to ferromagnetic materials is gaining more and more attraction. Indeed, thanks to a wider geometrical freedom, new topological optimized shapes for stator/rotor shapes can be addressed to enhance electric machines performances. However, the properties of the laser powder bed fusion (LPBF) processed alloy compared to conventionally produced counterpart must be still addressed. Accordingly, this paper presents for the first time the use of the LPBF for the manufacturing of Fe2.9wt.%Si electromagnetic shields. The process parameter selection material microstructure and the magnetic shielding factor are characterized.
期刊介绍:
The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.