{"title":"Mather Discrepancy as an Embedding Dimension in the Space of Arcs","authors":"H. Mourtada, Ana J. Reguera","doi":"10.4171/PRIMS/54-1-4","DOIUrl":null,"url":null,"abstract":"Let X be a variety over a field k and let X∞ be its space of arcs. We study the embedding dimension of the completion A^ of the local ring of X∞ at P where P is the stable point defined by a divisorial valuation ν on X. Assuming char k = 0, we prove that the embedding dimension of A^ is equal to k + 1 where k is the Mather discrepancy of X with respect to ν. We also obtain that the dimension of A^ has as lower bound the Mather-Jacobian log-discrepancy of X with respect to ν. For X normal and complete intersection, we prove as a consequence that points P of codimension one in X ∞ have discrepancy k ≤ 0.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/PRIMS/54-1-4","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/PRIMS/54-1-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11
Abstract
Let X be a variety over a field k and let X∞ be its space of arcs. We study the embedding dimension of the completion A^ of the local ring of X∞ at P where P is the stable point defined by a divisorial valuation ν on X. Assuming char k = 0, we prove that the embedding dimension of A^ is equal to k + 1 where k is the Mather discrepancy of X with respect to ν. We also obtain that the dimension of A^ has as lower bound the Mather-Jacobian log-discrepancy of X with respect to ν. For X normal and complete intersection, we prove as a consequence that points P of codimension one in X ∞ have discrepancy k ≤ 0.
期刊介绍:
The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.