Lei Huang , Chen An , Xiaodong Wang, Leon Bevan Bullock, Zhiqiang Wei
{"title":"Fine-grained Image Recognition via Attention Interaction and Counterfactual Attention Network","authors":"Lei Huang , Chen An , Xiaodong Wang, Leon Bevan Bullock, Zhiqiang Wei","doi":"10.1016/j.engappai.2023.106735","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Learning subtle and discriminative regions plays an important role in fine-grained image recognition, and attention mechanisms have shown great potential in such tasks. Recent research mainly focuses on employing the attention mechanism to locate key discriminative regions and learn </span>salient features<span>, whilst ignoring imperceptible complementary features and the causal relationship between prediction results and attention. To address the above issues, we propose an Attention Interaction and Counterfactual Attention Network (AICA-Net). Specifically, we propose an Attention Interaction Fusion Module (AIFM) to model the negative correlation between the attention map channels to locate the complementary features, and fuse the complementary features and key </span></span>discriminative features to generate richer fine-grained features. Simultaneously, an Enhanced Counterfactual Attention Module (ECAM) is proposed to generate a counterfactual attention map. By comparing the impact of the learned attention map and the counterfactual attention map on the final prediction results, quantifying the quality of attention drives the network to learn more effective attention. Extensive experiments on CUB-200-2011, FGVC-Aircraft and Stanford Cars datasets have shown that our AICA-Net can get outstanding results. In particular, it achieves 90.83% and 95.87% accuracy on two open competitive benchmark datasets CUB-200-2011 and Stanford Cars, respectively. Experiments demonstrate that our method outperforms state-of-the-art solutions.</p></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"125 ","pages":"Article 106735"},"PeriodicalIF":8.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197623009193","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Learning subtle and discriminative regions plays an important role in fine-grained image recognition, and attention mechanisms have shown great potential in such tasks. Recent research mainly focuses on employing the attention mechanism to locate key discriminative regions and learn salient features, whilst ignoring imperceptible complementary features and the causal relationship between prediction results and attention. To address the above issues, we propose an Attention Interaction and Counterfactual Attention Network (AICA-Net). Specifically, we propose an Attention Interaction Fusion Module (AIFM) to model the negative correlation between the attention map channels to locate the complementary features, and fuse the complementary features and key discriminative features to generate richer fine-grained features. Simultaneously, an Enhanced Counterfactual Attention Module (ECAM) is proposed to generate a counterfactual attention map. By comparing the impact of the learned attention map and the counterfactual attention map on the final prediction results, quantifying the quality of attention drives the network to learn more effective attention. Extensive experiments on CUB-200-2011, FGVC-Aircraft and Stanford Cars datasets have shown that our AICA-Net can get outstanding results. In particular, it achieves 90.83% and 95.87% accuracy on two open competitive benchmark datasets CUB-200-2011 and Stanford Cars, respectively. Experiments demonstrate that our method outperforms state-of-the-art solutions.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.