Non-Hermitian Hamiltonian beyond PT symmetry for time-dependent SU(1,1) and SU(2) systems — Exact solution and geometric phase in pseudo-invariant theory

Q2 Physics and Astronomy
Nadjat Amaouche , Maroua Sekhri , Rahma Zerimeche , Mustapha Maamache , J.-Q. Liang
{"title":"Non-Hermitian Hamiltonian beyond PT symmetry for time-dependent SU(1,1) and SU(2) systems — Exact solution and geometric phase in pseudo-invariant theory","authors":"Nadjat Amaouche ,&nbsp;Maroua Sekhri ,&nbsp;Rahma Zerimeche ,&nbsp;Mustapha Maamache ,&nbsp;J.-Q. Liang","doi":"10.1016/j.physo.2022.100126","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we investigate time-dependent non-Hermitian Hamiltonians, which consist of <span><math><mrow><mi>S</mi><mi>U</mi><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>S</mi><mi>U</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> generators. The former Hamiltonian is PT symmetric but the latter one is not. A time-dependent non-unitary operator is proposed to construct the non-Hermitian invariant, which is verified as pseudo-Hermitian with real eigenvalues. The exact solutions are obtained in terms of the eigenstates of the pseudo-Hermitian invariant operator for both the <span><math><mrow><mi>S</mi><mi>U</mi><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>S</mi><mi>U</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> systems in a unified manner. Then, we derive the Lewis–Riesenfeld (LR) phase, which can be separated into the dynamic and the geometrical phases. The analytical results are well consistent with those of the corresponding Hermitian Hamiltonians reported in the literature.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"13 ","pages":"Article 100126"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666032622000278/pdfft?md5=ec55307fa586d4c0e492a3c347a8a14b&pid=1-s2.0-S2666032622000278-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032622000278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we investigate time-dependent non-Hermitian Hamiltonians, which consist of SU(1,1) and SU(2) generators. The former Hamiltonian is PT symmetric but the latter one is not. A time-dependent non-unitary operator is proposed to construct the non-Hermitian invariant, which is verified as pseudo-Hermitian with real eigenvalues. The exact solutions are obtained in terms of the eigenstates of the pseudo-Hermitian invariant operator for both the SU(1,1) and SU(2) systems in a unified manner. Then, we derive the Lewis–Riesenfeld (LR) phase, which can be separated into the dynamic and the geometrical phases. The analytical results are well consistent with those of the corresponding Hermitian Hamiltonians reported in the literature.

时变SU(1,1)和SU(2)系统的超越PT对称的非厄米哈密顿量——伪不变理论中的精确解和几何相位
本文研究了由SU(1,1)和SU(2)生成子组成的时变非厄米哈密顿量。前一个哈密顿量是PT对称的,而后一个不是。提出了一个时变非酉算子来构造非厄米不变量,并验证了该非厄米不变量是具有实数特征值的伪厄米不变量。对SU(1,1)和SU(2)系统用伪厄密不变算子的特征态统一求得了精确解。在此基础上,推导出了可分为动态相位和几何相位的Lewis-Riesenfeld相位。分析结果与文献中相应的厄米哈密顿量一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信