A vanishing theorem for the canonical blow-ups of Grassmann manifolds

IF 0.5 Q3 MATHEMATICS
Hanlong Fang, Song-Chun Zhu
{"title":"A vanishing theorem for the canonical blow-ups of Grassmann manifolds","authors":"Hanlong Fang, Song-Chun Zhu","doi":"10.1515/coma-2020-0126","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝒯 s,p,n be the canonical blow-up of the Grassmann manifold G(p, n) constructed by blowing up the Plücker coordinate subspaces associated with the parameter s. We prove that the higher cohomology groups of the tangent bundle of 𝒯 s,p,n vanish. As an application, 𝒯s,p,n is locally rigid in the sense of Kodaira-Spencer.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"8 1","pages":"415 - 439"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2020-0126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Let 𝒯 s,p,n be the canonical blow-up of the Grassmann manifold G(p, n) constructed by blowing up the Plücker coordinate subspaces associated with the parameter s. We prove that the higher cohomology groups of the tangent bundle of 𝒯 s,p,n vanish. As an application, 𝒯s,p,n is locally rigid in the sense of Kodaira-Spencer.
Grassmann流形正则爆破的一个消失定理
设,p,n是由与参数s相关的pl cker坐标子空间的吹胀构造的Grassmann流形G(p, n)的正则吹胀。我们证明了,p,n的切束的高上同群消失。作为应用,𝒯s,p,n在Kodaira-Spencer意义上是局部刚性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信