The Generalized Lipkin-Meshkov-Glick Model and the Modified Algebraic Bethe Ansatz

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
T. Skrypnyk
{"title":"The Generalized Lipkin-Meshkov-Glick Model and the Modified Algebraic Bethe Ansatz","authors":"T. Skrypnyk","doi":"10.3842/SIGMA.2022.074","DOIUrl":null,"url":null,"abstract":"We show that the Lipkin-Meshkov-Glick 2N-fermion model is a particular case of one-spin Gaudin-type model in an external magnetic field corresponding to a limiting case of non-skew-symmetric elliptic r-matrix and to an external magnetic field directed along one axis. We propose an exactly-solvable generalization of the Lipkin-Meshkov-Glick fermion model based on the Gaudin-type model corresponding to the same r-matrix but arbitrary external magnetic field. This model coincides with the quantization of the classical Zhukovsky-Volterra gyrostat. We diagonalize the corresponding quantum Hamiltonian by means of the modified algebraic Bethe ansatz. We explicitly solve the corresponding Bethe-type equations for the case of small fermion number N=1,2.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2022.074","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We show that the Lipkin-Meshkov-Glick 2N-fermion model is a particular case of one-spin Gaudin-type model in an external magnetic field corresponding to a limiting case of non-skew-symmetric elliptic r-matrix and to an external magnetic field directed along one axis. We propose an exactly-solvable generalization of the Lipkin-Meshkov-Glick fermion model based on the Gaudin-type model corresponding to the same r-matrix but arbitrary external magnetic field. This model coincides with the quantization of the classical Zhukovsky-Volterra gyrostat. We diagonalize the corresponding quantum Hamiltonian by means of the modified algebraic Bethe ansatz. We explicitly solve the corresponding Bethe-type equations for the case of small fermion number N=1,2.
广义Lipkin-Meshkov-Glick模型及其修正代数beatz
我们证明了Lipkin-Meshkov-Glick 2n -费米子模型是外磁场中单自旋高丁型模型的特殊情况,对应于非偏对称椭圆r矩阵的极限情况和沿一轴方向的外磁场。我们提出了一种精确可解的Lipkin-Meshkov-Glick费米子模型的推广方法,该模型基于对应于相同r矩阵但任意外磁场的gaudin型模型。该模型与经典朱可夫斯基-沃尔泰拉陀螺的量子化一致。利用改进的代数Bethe ansatz对角化了相应的量子哈密顿量。对于小费米子数N=1,2的情况,我们显式地求解了相应的bethe型方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信