Fábio da Silva Lisboa, Eline Barbosa Ferreira, Francis Josiane Liana Baumgardt da Silva, Fabiano Rosa da Silva
{"title":"Catalytic activity in methyl esterification reactions and characterization of the superacid HNbMoO6 treated with different inorganic acids","authors":"Fábio da Silva Lisboa, Eline Barbosa Ferreira, Francis Josiane Liana Baumgardt da Silva, Fabiano Rosa da Silva","doi":"10.1080/17597269.2023.2170035","DOIUrl":null,"url":null,"abstract":"Abstract The superacid HNbMoO6 was synthesized from the treatment of the precursor LiNbMoO6 with different acids (HNO3, H2SO4, or H3PO4) in the concentrations of 2, 4, and 6 mol L−1. The solids obtained were characterized to elucidate their composition, acidity, and properties. The materials presented similar diffraction patterns and spectra regardless of the acid type and concentration used. The microscopy analysis showed that at lower concentrations of acid, lower crystal agglomeration was observed. The results of the energy-dispersive X-ray spectroscopy indicated that HNbMoO6 synthesized with H2SO4 6 mol L−1 had the highest Nb5+/Mo6+ ratio (1.95), besides the highest surface area among the synthesized solids (8.53 m2 g−1), and highest Lewis acidity (1.5 mmol of n-butylamine). All solids were efficient in the methyl esterification of lauric acid and did not undergo structural changes after the reactions. The best result was obtained with HNbMoO6 treated with H2SO4 6 mol L−1, with a high conversion rate of 81.79% in methyl laurate, an expressive catalytic gain of 36.82 p.p in contrast to the thermal conversion. Graphical Abstract","PeriodicalId":56057,"journal":{"name":"Biofuels-Uk","volume":"14 1","pages":"733 - 741"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels-Uk","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17597269.2023.2170035","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The superacid HNbMoO6 was synthesized from the treatment of the precursor LiNbMoO6 with different acids (HNO3, H2SO4, or H3PO4) in the concentrations of 2, 4, and 6 mol L−1. The solids obtained were characterized to elucidate their composition, acidity, and properties. The materials presented similar diffraction patterns and spectra regardless of the acid type and concentration used. The microscopy analysis showed that at lower concentrations of acid, lower crystal agglomeration was observed. The results of the energy-dispersive X-ray spectroscopy indicated that HNbMoO6 synthesized with H2SO4 6 mol L−1 had the highest Nb5+/Mo6+ ratio (1.95), besides the highest surface area among the synthesized solids (8.53 m2 g−1), and highest Lewis acidity (1.5 mmol of n-butylamine). All solids were efficient in the methyl esterification of lauric acid and did not undergo structural changes after the reactions. The best result was obtained with HNbMoO6 treated with H2SO4 6 mol L−1, with a high conversion rate of 81.79% in methyl laurate, an expressive catalytic gain of 36.82 p.p in contrast to the thermal conversion. Graphical Abstract
Biofuels-UkEnergy-Renewable Energy, Sustainability and the Environment
CiteScore
5.40
自引率
9.50%
发文量
56
期刊介绍:
Current energy systems need a vast transformation to meet the key demands of the 21st century: reduced environmental impact, economic viability and efficiency. An essential part of this energy revolution is bioenergy.
The movement towards widespread implementation of first generation biofuels is still in its infancy, requiring continued evaluation and improvement to be fully realised. Problems with current bioenergy strategies, for example competition over land use for food crops, do not yet have satisfactory solutions. The second generation of biofuels, based around cellulosic ethanol, are now in development and are opening up new possibilities for future energy generation. Recent advances in genetics have pioneered research into designer fuels and sources such as algae have been revealed as untapped bioenergy resources.
As global energy requirements change and grow, it is crucial that all aspects of the bioenergy production process are streamlined and improved, from the design of more efficient biorefineries to research into biohydrogen as an energy carrier. Current energy infrastructures need to be adapted and changed to fulfil the promises of biomass for power generation.
Biofuels provides a forum for all stakeholders in the bioenergy sector, featuring review articles, original research, commentaries, news, research and development spotlights, interviews with key opinion leaders and much more, with a view to establishing an international community of bioenergy communication.
As biofuel research continues at an unprecedented rate, the development of new feedstocks and improvements in bioenergy production processes provide the key to the transformation of biomass into a global energy resource. With the twin threats of climate change and depleted fossil fuel reserves looming, it is vitally important that research communities are mobilized to fully realize the potential of bioenergy.