Soil thermal properties during freeze–thaw dynamics as function of variable organic carbon and grain size distribution

IF 2.5 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES
Jelte G. H. de Bruin, V. Bense, M. J. van der Ploeg
{"title":"Soil thermal properties during freeze–thaw dynamics as function of variable organic carbon and grain size distribution","authors":"Jelte G. H. de Bruin, V. Bense, M. J. van der Ploeg","doi":"10.1002/vzj2.20252","DOIUrl":null,"url":null,"abstract":"Permafrost regions are experiencing increasing air temperatures, accelerating the thawing process, and thickening the active layer in summer. This can accelerate the release of greenhouse gasses into the atmosphere from the organic carbon stored in the permafrost. The long‐term thawing rates of permafrost below the active layer are governed by the soil thermal properties, the heat capacity, and thermal conductivity, which vary due to differences in grain sizes and distribution and organic matter content. Using nine column experiments comprised of fully saturated synthetic permafrost samples exposed to freeze–thaw cycles, the relative contributions of a range of soil grain sizes and organic matter contents on the soil thermal properties were investigated. The columns were subjected to a freeze and thaw cycle while soil temperatures were recorded in profiles. To infer the thermal properties from these experimental data, a numerical heat transfer model was used. The best fit between the observations and a batch of 5544 numerical models was used to find optimum values for permafrost thermal properties. The optimized heat capacity varied between 500 and 650 (J/m3 K) and thermal conductivity between 2.45 and 3.55 (W/m K). These optimized parameters were subsequently used to model a 100‐year permafrost active layer thaw scenario under warming air temperatures. Variations in the optimized thermal properties resulted in a time difference in thawing depth of 10–15 years and thawing depths varied between 9 and 10 m between the different optimized thermal properties at the end of the 100‐year scenario.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20252","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Permafrost regions are experiencing increasing air temperatures, accelerating the thawing process, and thickening the active layer in summer. This can accelerate the release of greenhouse gasses into the atmosphere from the organic carbon stored in the permafrost. The long‐term thawing rates of permafrost below the active layer are governed by the soil thermal properties, the heat capacity, and thermal conductivity, which vary due to differences in grain sizes and distribution and organic matter content. Using nine column experiments comprised of fully saturated synthetic permafrost samples exposed to freeze–thaw cycles, the relative contributions of a range of soil grain sizes and organic matter contents on the soil thermal properties were investigated. The columns were subjected to a freeze and thaw cycle while soil temperatures were recorded in profiles. To infer the thermal properties from these experimental data, a numerical heat transfer model was used. The best fit between the observations and a batch of 5544 numerical models was used to find optimum values for permafrost thermal properties. The optimized heat capacity varied between 500 and 650 (J/m3 K) and thermal conductivity between 2.45 and 3.55 (W/m K). These optimized parameters were subsequently used to model a 100‐year permafrost active layer thaw scenario under warming air temperatures. Variations in the optimized thermal properties resulted in a time difference in thawing depth of 10–15 years and thawing depths varied between 9 and 10 m between the different optimized thermal properties at the end of the 100‐year scenario.
冻融过程中土壤热特性随有机碳和粒度分布的变化
永久冻土地区的气温正在上升,融化过程加快,夏季活动层增厚。这可以加速储存在永久冻土中的有机碳向大气中释放温室气体。活动层下方永久冻土的长期解冻率受土壤热特性、热容和热导率的控制,这些特性因颗粒大小、分布和有机质含量的差异而变化。使用由暴露于冻融循环的完全饱和合成永久冻土样品组成的九柱实验,研究了一系列土壤粒度和有机质含量对土壤热特性的相对贡献。在剖面图中记录土壤温度的同时,对柱子进行冻融循环。为了从这些实验数据中推断出热特性,使用了一个数值传热模型。观测结果与一批5544个数值模型之间的最佳拟合用于寻找永久冻土热特性的最佳值。优化的热容在500和650(J/m3 K)之间变化,热导率在2.45和3.55(W/m K)之间。随后,这些优化参数被用于模拟气温升高下的100年永久冻土活动层解冻情景。优化热性能的变化导致解冻深度的时间差为10-15年,在100年情景结束时,不同优化热性能之间的解冻深度在9-10米之间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vadose Zone Journal
Vadose Zone Journal 环境科学-环境科学
CiteScore
5.60
自引率
7.10%
发文量
61
审稿时长
3.8 months
期刊介绍: Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信