Closed form solutions of complex wave equations via the modified simple equation method

A. Hossain, M. Akbar, A. Wazwaz
{"title":"Closed form solutions of complex wave equations via the modified simple equation method","authors":"A. Hossain, M. Akbar, A. Wazwaz","doi":"10.1080/23311940.2017.1312751","DOIUrl":null,"url":null,"abstract":"Abstract The Kundu–Eckhaus equation and the derivative nonlinear Schrodinger equation describe various physical processes in nonlinear optics, plasma physics, fluid mechanics, magneto-hydrodynamic equation in the presence of the Hall Effect. Thus, closed form solutions of these equations are very important to realize the obscurity of the phenomena. The modified simple equation (MSE) method is highly effective and competent mathematical tool to examine closed form wave solutions of nonlinear evolution equations (NLEEs) arising in mathematical physics, applied mathematics and engineering. In this article, the MSE method is suggested and executed to construct closed form wave solutions of the above-mentioned equations involving parameters. When the parameters receive special values, impressive solitary wave solutions are derived from the exact solutions.","PeriodicalId":43050,"journal":{"name":"Cogent Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311940.2017.1312751","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311940.2017.1312751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Abstract The Kundu–Eckhaus equation and the derivative nonlinear Schrodinger equation describe various physical processes in nonlinear optics, plasma physics, fluid mechanics, magneto-hydrodynamic equation in the presence of the Hall Effect. Thus, closed form solutions of these equations are very important to realize the obscurity of the phenomena. The modified simple equation (MSE) method is highly effective and competent mathematical tool to examine closed form wave solutions of nonlinear evolution equations (NLEEs) arising in mathematical physics, applied mathematics and engineering. In this article, the MSE method is suggested and executed to construct closed form wave solutions of the above-mentioned equations involving parameters. When the parameters receive special values, impressive solitary wave solutions are derived from the exact solutions.
用改进的简单方程法求解复杂波动方程的封闭形式
摘要昆都-埃克豪斯方程及其导数非线性薛定谔方程描述了霍尔效应存在下的非线性光学、等离子体物理、流体力学、磁流体力学方程中的各种物理过程。因此,这些方程的闭形式解对于认识现象的隐蔽性是非常重要的。修正简单方程(MSE)方法是研究数学物理、应用数学和工程中出现的非线性发展方程(NLEEs)的闭形波解的高效、有效的数学工具。本文提出并实施了MSE方法来构造上述方程的含参数的闭波解。当参数得到特殊值时,从精确解中得到令人印象深刻的孤立波解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cogent Physics
Cogent Physics PHYSICS, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信