Eighth order Predictor-Corrector Method to Solve Quadratic Riccati Differential Equations

IF 0.3 Q4 MULTIDISCIPLINARY SCIENCES
Wase Kassahun, Alemayehu Shiferaw, S. Gebregiorgis
{"title":"Eighth order Predictor-Corrector Method to Solve Quadratic Riccati Differential Equations","authors":"Wase Kassahun, Alemayehu Shiferaw, S. Gebregiorgis","doi":"10.4314/mejs.v13i2.2","DOIUrl":null,"url":null,"abstract":"In this paper, the eighth-order predictor-corrector method is presented for solving quadratic Riccati differential equations. First, the interval is discretized and then the method is formulated by using Newton’s backward difference interpolation formula. The stability and convergence of the method have been investigated. To validate the applicability of the proposed method, two model examples with exact solutions have been considered and numerically solved. Maximum absolute errors are presented in tables and figures for different values of mesh size h and the present method gives better results than some existing numerical methods reported in the literature.  ","PeriodicalId":18948,"journal":{"name":"Momona Ethiopian Journal of Science","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Momona Ethiopian Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/mejs.v13i2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the eighth-order predictor-corrector method is presented for solving quadratic Riccati differential equations. First, the interval is discretized and then the method is formulated by using Newton’s backward difference interpolation formula. The stability and convergence of the method have been investigated. To validate the applicability of the proposed method, two model examples with exact solutions have been considered and numerically solved. Maximum absolute errors are presented in tables and figures for different values of mesh size h and the present method gives better results than some existing numerical methods reported in the literature.  
求解二次Riccati微分方程的八阶预测校正法
本文提出了求解二次里卡第微分方程的八阶预测校正方法。首先对区间进行离散化,然后利用牛顿的后向差分插值公式对方法进行求解。研究了该方法的稳定性和收敛性。为了验证所提方法的适用性,考虑了两个具有精确解的模型实例,并进行了数值求解。表格和图中给出了不同网格尺寸h值下的最大绝对误差,与现有文献报道的一些数值方法相比,本文方法的结果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Momona Ethiopian Journal of Science
Momona Ethiopian Journal of Science MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
13
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信