Entropy Generation-Based Analysis of Laminar Magneto-Convection in Different Cross-Section Channel Filled with Ferrofluid and Subjected to Partial and Full Magnetic Fields
{"title":"Entropy Generation-Based Analysis of Laminar Magneto-Convection in Different Cross-Section Channel Filled with Ferrofluid and Subjected to Partial and Full Magnetic Fields","authors":"Kamel Zitouni, L. Aidaoui, Y. Lasbet, T. Tayebi","doi":"10.1166/jon.2023.2013","DOIUrl":null,"url":null,"abstract":"Heat transfer and entropy generation of laminar flow of a ferrofluid in different cross-section channel subjected to partial and full magnetic field are investigated in this study. A constant heat flux condition was applied on the external surface. The conservation equations (mass,\n momentum, and energy) are solved numerically via the finite volume method with a second-order precision. The effects of fully or partially applying a magnetic field with different directions and intensities on thermodynamic features, heat transfer, and entropy generation have been investigated.\n Analyses were carried out in four different cross-section channels, namely triangular, rectangular, circular, and elliptical. Results indicate that the circular cross-section channel provides higher heat transfer rates and lower entropy generation than non-circular cross-section channels.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.2013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Heat transfer and entropy generation of laminar flow of a ferrofluid in different cross-section channel subjected to partial and full magnetic field are investigated in this study. A constant heat flux condition was applied on the external surface. The conservation equations (mass,
momentum, and energy) are solved numerically via the finite volume method with a second-order precision. The effects of fully or partially applying a magnetic field with different directions and intensities on thermodynamic features, heat transfer, and entropy generation have been investigated.
Analyses were carried out in four different cross-section channels, namely triangular, rectangular, circular, and elliptical. Results indicate that the circular cross-section channel provides higher heat transfer rates and lower entropy generation than non-circular cross-section channels.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.