J. S. Bansah
求助PDF
{"title":"Martingale Transforms between Martingale Hardy-amalgam Spaces","authors":"J. S. Bansah","doi":"10.1155/2021/8810220","DOIUrl":null,"url":null,"abstract":"<jats:p>We discuss martingale transforms between martingale Hardy-amalgam spaces <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msubsup>\n <mrow>\n <mi>H</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n <mrow>\n <mi>s</mi>\n </mrow>\n </msubsup>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi mathvariant=\"script\">Q</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <msub>\n <mrow>\n <mi mathvariant=\"script\">P</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <mo>.</mo>\n </math>\n </jats:inline-formula> Let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mn>0</mn>\n <mo><</mo>\n <mi>p</mi>\n <mo><</mo>\n <mi>q</mi>\n <mo><</mo>\n <mo>∞</mo>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo><</mo>\n <mi>p</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msub>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo><</mo>\n <mi>q</mi>\n </math>\n </jats:inline-formula> and let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>f</mi>\n <mo>=</mo>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>n</mi>\n <mo>∈</mo>\n <mi>ℕ</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> be a martingale in <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <msub>\n <mrow>\n <mi mathvariant=\"script\">P</mi>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>; then, we show that its martingale transforms are the martingales in <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msub>\n <mrow>\n <mi mathvariant=\"script\">P</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> for some <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n </math>\n </jats:inline-formula> and similarly for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <msubsup>\n <mrow>\n <mi>H</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n <mrow>\n <mi>s</mi>\n </mrow>\n </msubsup>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <msub>\n <mrow>\n <mi mathvariant=\"script\">Q</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <mo>.</mo>\n </math>\n </jats:inline-formula>\n </jats:p>","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/8810220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
引用
批量引用
鞅Hardy-amalgam空间之间的鞅变换
讨论鞅Hardy-amalgam空间H p, q s,Q p,q P P q。设0 p q∞,p1 P和q1Q,设f = fn,n∈n是P P中的一个鞅1 ,q1;然后,我们证明它的鞅变换是P P q中对于某个P的鞅,q和hp也一样,q s和q p,问 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。