The Effect of Extraction Time of Raja Nangka Banana Peel as Capping Agent on the Characteristic and Antibacterial Activity of ZnO Nanoparticles Against Staphylococcus epidermidis

Adinnia Apriandini, F. Fajaroh, A. Aliyatulmuna, E. Ciptawati
{"title":"The Effect of Extraction Time of Raja Nangka Banana Peel as Capping Agent on the Characteristic and Antibacterial Activity of ZnO Nanoparticles Against Staphylococcus epidermidis","authors":"Adinnia Apriandini, F. Fajaroh, A. Aliyatulmuna, E. Ciptawati","doi":"10.24252/al-kimia.v10i2.31484","DOIUrl":null,"url":null,"abstract":"A green chemistry-based ZnO nanoparticle synthesis method based on plant extracts has been developed. Raja nangka banana peel is one of them. The extraction time is one of the elements that influences the amounts of secondary metabolites. The longer the extraction time, the more secondary metabolites are obtained. If the optimal time is exceeded, the secondary metabolite compounds will decrease. The purpose of this research was to determine the optimal time to extract secondary metabolites from the raja nangka banana peel and to know the effect of extraction time on the characteristics of ZnO nanoparticles, which include morphology, size, and antibacterial activity against Staphylococcus epidermidis. The steps of this research: maceration, phytochemical tests and total levels tests, synthesis of ZnO nanoparticles, characterization, and antibacterial activity test against Staphylococcus epidermidis. Maceration for 24 hours is the best time for extracting secondary metabolites from raja nangka banana peels. The SEM test results show that the morphology of the three samples had agglomeration. The ZnO nanoparticles with 24-hour raja nangka banana peel extract had a smaller size of 295.2 nm and were spherical. Inhibition zone diameter from ZnO nanoparticles with 24-hour raja nangka banana peel extract has a larger area of 5.65 mm.","PeriodicalId":7535,"journal":{"name":"Al-Kimia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Kimia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24252/al-kimia.v10i2.31484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A green chemistry-based ZnO nanoparticle synthesis method based on plant extracts has been developed. Raja nangka banana peel is one of them. The extraction time is one of the elements that influences the amounts of secondary metabolites. The longer the extraction time, the more secondary metabolites are obtained. If the optimal time is exceeded, the secondary metabolite compounds will decrease. The purpose of this research was to determine the optimal time to extract secondary metabolites from the raja nangka banana peel and to know the effect of extraction time on the characteristics of ZnO nanoparticles, which include morphology, size, and antibacterial activity against Staphylococcus epidermidis. The steps of this research: maceration, phytochemical tests and total levels tests, synthesis of ZnO nanoparticles, characterization, and antibacterial activity test against Staphylococcus epidermidis. Maceration for 24 hours is the best time for extracting secondary metabolites from raja nangka banana peels. The SEM test results show that the morphology of the three samples had agglomeration. The ZnO nanoparticles with 24-hour raja nangka banana peel extract had a smaller size of 295.2 nm and were spherical. Inhibition zone diameter from ZnO nanoparticles with 24-hour raja nangka banana peel extract has a larger area of 5.65 mm.
南卡香蕉皮盖膜提取时间对ZnO纳米粒抗表皮葡萄球菌特性及抗菌活性的影响
提出了一种基于植物提取物的绿色化学合成纳米氧化锌的方法。香蕉皮Raja nangka就是其中之一。提取时间是影响次生代谢物含量的因素之一。提取时间越长,得到的次生代谢物越多。如果超过最佳时间,次级代谢物化合物将减少。本研究的目的是确定从香蕉皮中提取次级代谢产物的最佳时间,并了解提取时间对ZnO纳米颗粒的形貌、大小和对表皮葡萄球菌的抗菌活性的影响。本研究的步骤:浸渍、植物化学试验和总水平试验、氧化锌纳米颗粒的合成、表征和对表皮葡萄球菌的抗菌活性试验。浸渍24h是提取南卡香蕉皮次生代谢产物的最佳时间。SEM测试结果表明,三种试样的形貌均存在团聚现象。24小时香蕉皮提取物制备的ZnO纳米颗粒尺寸较小,为295.2 nm,呈球形。24小时的香蕉皮提取物对ZnO纳米颗粒的抑制区直径较大,为5.65 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
10
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信