Simulation study on measurement characteristics of ion energy analyzer

Q4 Engineering
Zhai Hongyu, Cheng Jian, C. Yinhua, Lu Wei
{"title":"Simulation study on measurement characteristics of ion energy analyzer","authors":"Zhai Hongyu, Cheng Jian, C. Yinhua, Lu Wei","doi":"10.11884/HPLPB202032.190459","DOIUrl":null,"url":null,"abstract":"The ion energy analyzer (IEA), also known as the retarding potential analyzer (RPA), is widely used as an important tool for measuring plasma energy in situ and is widely used in ionospheric detection satellites. The ion energy of the ionosphere is too low to be stabilized, thus the measurement characteristics of the IEA can’t be effectively studied through experiments. As there is no such problem in simulation, simulation has become a powerful tool for studying IEA. This paper analyzes the low-energy ion measurement characteristics of the IEA through the simulation software COMSOL, introduces the working principle of the IEA, and gives a comprehensive formula derivation for the ion measurement process. Based on simulation and analysis of three candidate design schemes, one of the schemes whose transmission curve is closest to the ideal step function is chosen. In theory, the measurement results of this scheme have the least error. The comprehensive error analysis results at various ion temperatures also show that the gap between the measurement results and the theoretical value of the scheme is narrow. The ion energy distribution can be measured more accurately. Finally, the effects of electric field distortion, plasma sheath, grid alignment and ion temperature are studied. According to these simulations, some experimental phenomena can be reasonably explained.","PeriodicalId":39871,"journal":{"name":"强激光与粒子束","volume":"32 1","pages":"084002-1-084002-8"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"强激光与粒子束","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.11884/HPLPB202032.190459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The ion energy analyzer (IEA), also known as the retarding potential analyzer (RPA), is widely used as an important tool for measuring plasma energy in situ and is widely used in ionospheric detection satellites. The ion energy of the ionosphere is too low to be stabilized, thus the measurement characteristics of the IEA can’t be effectively studied through experiments. As there is no such problem in simulation, simulation has become a powerful tool for studying IEA. This paper analyzes the low-energy ion measurement characteristics of the IEA through the simulation software COMSOL, introduces the working principle of the IEA, and gives a comprehensive formula derivation for the ion measurement process. Based on simulation and analysis of three candidate design schemes, one of the schemes whose transmission curve is closest to the ideal step function is chosen. In theory, the measurement results of this scheme have the least error. The comprehensive error analysis results at various ion temperatures also show that the gap between the measurement results and the theoretical value of the scheme is narrow. The ion energy distribution can be measured more accurately. Finally, the effects of electric field distortion, plasma sheath, grid alignment and ion temperature are studied. According to these simulations, some experimental phenomena can be reasonably explained.
离子能量分析仪测量特性的仿真研究
离子能量分析仪(IEA),也称为阻滞电位分析仪(RPA),被广泛用作原位测量等离子体能量的重要工具,并被广泛用于电离层探测卫星。电离层的离子能量太低,无法稳定,因此无法通过实验有效地研究IEA的测量特性。由于在模拟中不存在这样的问题,模拟已成为研究IEA的有力工具。本文通过模拟软件COMSOL分析了IEA的低能离子测量特性,介绍了IEA工作原理,并对离子测量过程进行了全面的公式推导。在对三种候选设计方案进行仿真分析的基础上,选择了一种传输曲线最接近理想阶跃函数的方案。理论上,该方案的测量结果误差最小。在不同离子温度下的综合误差分析结果也表明,该方案的测量结果与理论值之间的差距很小。可以更准确地测量离子能量分布。最后,研究了电场畸变、等离子体鞘层、栅极排列和离子温度的影响。根据这些模拟,可以合理地解释一些实验现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
强激光与粒子束
强激光与粒子束 Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
11289
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信