An Iterative Approach to Solve Volterra Nonlinear Integral Equations

IF 1 Q1 MATHEMATICS
Rania Saadeh
{"title":"An Iterative Approach to Solve Volterra Nonlinear Integral Equations","authors":"Rania Saadeh","doi":"10.29020/nybg.ejpam.v16i3.4791","DOIUrl":null,"url":null,"abstract":"In this study, we provide the Aboodh decomposition method, a novel analytical technique. The fundamental definitions and theorems of the suggested approach are provided and analyzed. This new method is a novel mixture of the Aboodh transform and the Adomian decomposition method. The new method is used to solve nonlinear integro-differential equations (IDEs), and the solutions are given as quickly expanding series of terms. We compute the maximum absolute error and provide some figures to compare the resulting approximative solutions with the exact ones in order to demonstrate the method’s applicability and efficiency.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we provide the Aboodh decomposition method, a novel analytical technique. The fundamental definitions and theorems of the suggested approach are provided and analyzed. This new method is a novel mixture of the Aboodh transform and the Adomian decomposition method. The new method is used to solve nonlinear integro-differential equations (IDEs), and the solutions are given as quickly expanding series of terms. We compute the maximum absolute error and provide some figures to compare the resulting approximative solutions with the exact ones in order to demonstrate the method’s applicability and efficiency.
求解Volterra非线性积分方程的迭代法
在这项研究中,我们提供了Aboodh分解法,一种新的分析技术。给出并分析了该方法的基本定义和定理。该方法是Aboodh变换和Adomian分解方法的新结合。将该方法用于求解非线性积分微分方程,并将其解表示为快速展开的级数。我们计算了最大绝对误差,并提供了一些数字来比较所得到的近似解和精确解,以证明该方法的适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信