FBAdLibrarian and Pykognition: open science tools for the collection and emotion detection of images in Facebook political ads with computer vision

IF 2.6 2区 社会学 Q1 COMMUNICATION
Rasmus Schmøkel, Michael Bossetta
{"title":"FBAdLibrarian and Pykognition: open science tools for the collection and emotion detection of images in Facebook political ads with computer vision","authors":"Rasmus Schmøkel, Michael Bossetta","doi":"10.1080/19331681.2021.1928579","DOIUrl":null,"url":null,"abstract":"ABSTRACT We present a methodological workflow using two open science tools that we developed. The first, FBAdLibrian, collects images from the Facebook Ad Library. The second, Pykognition, simplifies facial and emotion detection in images using computer vision. We provide a methodological workflow for using these tools and apply them to a case study of the 2020 US primary elections. We find that unique images of campaigning candidates are only a fraction (<.1%) of overall ads. Furthermore, we find that candidates most often display happiness and calm in their facial expressions, and they rarely attack opponents in image-based ads from their official Facebook pages. When candidates do attack, opponents are portrayed with emotions such as anger, sadness, and fear.","PeriodicalId":47047,"journal":{"name":"Journal of Information Technology & Politics","volume":"19 1","pages":"118 - 128"},"PeriodicalIF":2.6000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19331681.2021.1928579","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Technology & Politics","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/19331681.2021.1928579","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 6

Abstract

ABSTRACT We present a methodological workflow using two open science tools that we developed. The first, FBAdLibrian, collects images from the Facebook Ad Library. The second, Pykognition, simplifies facial and emotion detection in images using computer vision. We provide a methodological workflow for using these tools and apply them to a case study of the 2020 US primary elections. We find that unique images of campaigning candidates are only a fraction (<.1%) of overall ads. Furthermore, we find that candidates most often display happiness and calm in their facial expressions, and they rarely attack opponents in image-based ads from their official Facebook pages. When candidates do attack, opponents are portrayed with emotions such as anger, sadness, and fear.
FBAdLibrarian和Pykognition:利用计算机视觉对Facebook政治广告中的图像进行收集和情感检测的开放科学工具
我们提出了一个使用我们开发的两个开放科学工具的方法论工作流。第一个是FBAdLibrian,它从Facebook广告库中收集图片。第二个是Pykognition,它使用计算机视觉简化了图像中的面部和情感检测。我们提供了一个使用这些工具的方法论工作流程,并将其应用于2020年美国初选的案例研究。我们发现竞选候选人的独特图像只占整个广告的一小部分(< 0.1%)。此外,我们发现候选人最常在他们的面部表情中表现出快乐和平静,他们很少在他们的官方Facebook页面上的基于图像的广告中攻击对手。当候选人发起攻击时,对手会表现出愤怒、悲伤和恐惧等情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
7.70%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信