Shraddha Hegde, G. Kumar, C. Engle, Jimmy L. Avery, Suja Aarattuthodi, Jeffrey C. Johnson, Jonathan van Senten
{"title":"Production economic relationships in intensive U.S. catfish production systems","authors":"Shraddha Hegde, G. Kumar, C. Engle, Jimmy L. Avery, Suja Aarattuthodi, Jeffrey C. Johnson, Jonathan van Senten","doi":"10.1080/13657305.2022.2038720","DOIUrl":null,"url":null,"abstract":"Abstract The U.S. catfish industry is evolving by adopting intensive farming practices such as intensively aerated ponds and split-pond systems. The functional relationship between fish yield and key production inputs in these intensive systems was analyzed based on commercial catfish production data from 143 pond observations (2010−2018). A Cobb-Douglas production function was employed for the intensively aerated ponds and a modified translog production function was used to define the production relationships in split ponds. Results indicated that the size of fingerlings at stocking, stocking density, aeration rate, feeding rate, survival, and harvest size of the fish were statistically significant variables influencing fish production in intensively aerated ponds. Initial fingerling stocking biomass (interaction of stocking size and stocking density), feed conversion ratio (FCR), feeding rate, and pond size were the most important variables influencing production in split-pond systems. Feed fed, as well as stocking biomass, were the significant variables found in both models. Both production functions indicated further scope for improvement in the use of inputs to increase production, especially in feed management.","PeriodicalId":48854,"journal":{"name":"Aquaculture Economics & Management","volume":"26 1","pages":"314 - 331"},"PeriodicalIF":3.8000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Economics & Management","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/13657305.2022.2038720","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ECONOMICS & POLICY","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract The U.S. catfish industry is evolving by adopting intensive farming practices such as intensively aerated ponds and split-pond systems. The functional relationship between fish yield and key production inputs in these intensive systems was analyzed based on commercial catfish production data from 143 pond observations (2010−2018). A Cobb-Douglas production function was employed for the intensively aerated ponds and a modified translog production function was used to define the production relationships in split ponds. Results indicated that the size of fingerlings at stocking, stocking density, aeration rate, feeding rate, survival, and harvest size of the fish were statistically significant variables influencing fish production in intensively aerated ponds. Initial fingerling stocking biomass (interaction of stocking size and stocking density), feed conversion ratio (FCR), feeding rate, and pond size were the most important variables influencing production in split-pond systems. Feed fed, as well as stocking biomass, were the significant variables found in both models. Both production functions indicated further scope for improvement in the use of inputs to increase production, especially in feed management.
期刊介绍:
Aquaculture Economics and Management is a peer-reviewed, international journal which aims to encourage the application of economic analysis to the management, modeling, and planning of aquaculture in public and private sectors. The journal publishes original, high quality papers related to all aspects of aquaculture economics and management including aquaculture production and farm management, innovation and technology adoption, processing and distribution, marketing, consumer behavior and pricing, international trade, policy analysis, and the role of aquaculture in food security, livelihoods, and environmental management. Papers are peer reviewed and evaluated for their scientific merits and contributions.