Kinetic Dyson Brownian motion

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
P. Perruchaud
{"title":"Kinetic Dyson Brownian motion","authors":"P. Perruchaud","doi":"10.1214/22-ecp480","DOIUrl":null,"url":null,"abstract":"We study the spectrum of the kinetic Brownian motion in the space of d × d Hermitian matrices, d ≥ 2 . We show that the eigenvalues stay distinct for all times, and that the process Λ of eigenvalues is a kinetic diffusion (i.e. the pair (Λ , ˙Λ) of Λ and its derivative is Markovian) if and only if d = 2 . In the large scale and large time limit, we show that Λ converges to the usual (Markovian) Dyson Brownian motion under suitable normalisation, regardless of the dimension.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ecp480","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the spectrum of the kinetic Brownian motion in the space of d × d Hermitian matrices, d ≥ 2 . We show that the eigenvalues stay distinct for all times, and that the process Λ of eigenvalues is a kinetic diffusion (i.e. the pair (Λ , ˙Λ) of Λ and its derivative is Markovian) if and only if d = 2 . In the large scale and large time limit, we show that Λ converges to the usual (Markovian) Dyson Brownian motion under suitable normalisation, regardless of the dimension.
动能戴森-布朗运动
我们研究了d × d厄米矩阵空间中动能布朗运动的谱,d≥2。我们证明,当且仅当d = 2时,特征值始终保持不同,并且特征值的过程Λ是一个动力学扩散(即Λ的对(Λ, Λ)及其导数是马尔可夫的)。在大尺度和大时间限制下,我们证明Λ在适当的归一化下收敛于通常的(马尔可夫)戴森布朗运动,而不考虑维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信