Blocking of gastric acid induced histopathological alterations, enhancing of DNA content and proliferation of goblet cells in the acute lung injury mice models by nano-fenugreek oral administration
{"title":"Blocking of gastric acid induced histopathological alterations, enhancing of DNA content and proliferation of goblet cells in the acute lung injury mice models by nano-fenugreek oral administration","authors":"S. Hamad, M. El-Naggar","doi":"10.1080/15376516.2019.1669249","DOIUrl":null,"url":null,"abstract":"Abstract This current study aimed at detecting the potential protective role of nano-fenugreek seed on acute lung injury (ALI) induced by instillation gastric acid in male Swiss albino mice using histological and histochemical studies. Forty animals were grouped as follows: control group, HCl-treated group, low nano-fenugreek + HCl treated group, and high nano-fenugreek + HCl treated group. Pretreatment with nano-fenugreek in animal model of ALI resulted in marked ameliorations of the lung histological lesions and injury induced by HCL instillation in a dose dependent manner. It also caused inhibition in the increase of the DNA content and prevented proliferation of goblet cells induced by HCl instillation alone. In conclusion, pretreatment with Nano-fenugreek prior induction ALI could be suppress the aggregations of inflammatory cells, enhancing of DNA content, and proliferation of goblet cells induced by gastric acid in a dose dependent manner. We suggest that Nano-fenugreek may be useful in combating lung injury.","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":"30 1","pages":"153 - 158"},"PeriodicalIF":2.8000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15376516.2019.1669249","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2019.1669249","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract This current study aimed at detecting the potential protective role of nano-fenugreek seed on acute lung injury (ALI) induced by instillation gastric acid in male Swiss albino mice using histological and histochemical studies. Forty animals were grouped as follows: control group, HCl-treated group, low nano-fenugreek + HCl treated group, and high nano-fenugreek + HCl treated group. Pretreatment with nano-fenugreek in animal model of ALI resulted in marked ameliorations of the lung histological lesions and injury induced by HCL instillation in a dose dependent manner. It also caused inhibition in the increase of the DNA content and prevented proliferation of goblet cells induced by HCl instillation alone. In conclusion, pretreatment with Nano-fenugreek prior induction ALI could be suppress the aggregations of inflammatory cells, enhancing of DNA content, and proliferation of goblet cells induced by gastric acid in a dose dependent manner. We suggest that Nano-fenugreek may be useful in combating lung injury.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.