Experimental and simulation study of CO2 breakthrough curves in a fixed-bed adsorption process

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY
M. Nedoma, M. Staf, J. Hrdlička
{"title":"Experimental and simulation study of CO2 breakthrough curves in a fixed-bed adsorption process","authors":"M. Nedoma, M. Staf, J. Hrdlička","doi":"10.14311/ap.2022.62.0370","DOIUrl":null,"url":null,"abstract":"This paper focuses on the laboratory experiments of low-temperature adsorption of CO2 at elevated pressure and on the validation of our mathematical model with the data obtained. The numerical approach uses fitting of adsorption isotherm parameters and sensitivity analysis of parameters influencing the breakthrough curve shape and onset time. We first evaluate the results of breakthrough experiments for zeolite 13X. Then, we use the results obtained to design a dynamic mathematical model to predict the breakthrough curve profile. Experimental results show that zeolite 13X possesses high adsorption capacities (over 10 % of its weight at adsorption temperatures of 293 K and below), as expected. The mathematical simulation was accurate at predicting the breakthrough onset time; however, this prediction accuracy declined with the outlet CO2 concentration exceeding 75 %, which is discussed. The sensitivity analysis indicated that the choice of different estimates of mass transport and bed porosity, as well as the choice of numerical scheme, can lead to a more accurate prediction, but the same set of parameters is not suitable for all process conditions.","PeriodicalId":45804,"journal":{"name":"Acta Polytechnica","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/ap.2022.62.0370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

This paper focuses on the laboratory experiments of low-temperature adsorption of CO2 at elevated pressure and on the validation of our mathematical model with the data obtained. The numerical approach uses fitting of adsorption isotherm parameters and sensitivity analysis of parameters influencing the breakthrough curve shape and onset time. We first evaluate the results of breakthrough experiments for zeolite 13X. Then, we use the results obtained to design a dynamic mathematical model to predict the breakthrough curve profile. Experimental results show that zeolite 13X possesses high adsorption capacities (over 10 % of its weight at adsorption temperatures of 293 K and below), as expected. The mathematical simulation was accurate at predicting the breakthrough onset time; however, this prediction accuracy declined with the outlet CO2 concentration exceeding 75 %, which is discussed. The sensitivity analysis indicated that the choice of different estimates of mass transport and bed porosity, as well as the choice of numerical scheme, can lead to a more accurate prediction, but the same set of parameters is not suitable for all process conditions.
固定床吸附过程中CO2突破曲线的实验与模拟研究
本文重点研究了CO2在高压下的低温吸附实验,并用获得的数据验证了我们的数学模型。数值方法使用吸附等温线参数的拟合和影响穿透曲线形状和起始时间的参数的敏感性分析。我们首先评估了13X沸石的突破性实验结果。然后,我们利用获得的结果设计了一个动态数学模型来预测突破曲线轮廓。实验结果表明,正如预期的那样,13X沸石具有高吸附能力(在293K及以下的吸附温度下超过其重量的10%)。数学模拟在预测突破开始时间方面是准确的;然而,这种预测精度随着出口CO2浓度超过75%而下降,对此进行了讨论。敏感性分析表明,选择不同的传质和床层孔隙度估计值,以及选择数值方案,可以获得更准确的预测,但同一组参数并不适用于所有工艺条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Polytechnica
Acta Polytechnica ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
12.50%
发文量
49
审稿时长
24 weeks
期刊介绍: Acta Polytechnica is a scientific journal published by CTU in Prague. The main title, Acta Polytechnica, is accompanied by the subtitle Journal of Advanced Engineering, which defines the scope of the journal more precisely - Acta Polytechnica covers a wide spectrum of engineering topics, physics and mathematics. Our aim is to be a high-quality multi-disciplinary journal publishing the results of basic research and also applied research. We place emphasis on the quality of all published papers. The journal should also serve as a bridge between basic research in natural sciences and applied research in all technical disciplines. The innovative research results published by young researchers or by postdoctoral fellows, and also the high-quality papers by researchers from the international scientific community, reflect the good position of CTU in the World University Rankings. We hope that you will find our journal interesting, and that it will serve as a valuable source of scientific information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信