Flippable Edges in Triangulations on Surfaces

IF 0.5 4区 数学 Q3 MATHEMATICS
Daiki Ikegami, Atsuhiro Nakamoto
{"title":"Flippable Edges in Triangulations on Surfaces","authors":"Daiki Ikegami, Atsuhiro Nakamoto","doi":"10.7151/dmgt.2377","DOIUrl":null,"url":null,"abstract":"Abstract Concerning diagonal flips on triangulations, Gao et al. showed that any triangulation G on the sphere with n ≥ 5 vertices has at least n − 2 flippable edges. Furthermore, if G has minimum degree at least 4 and n ≥ 9, then G has at least 2n + 3 flippable edges. In this paper, we give a simpler proof of their results, and extend them to the case of the projective plane, the torus and the Klein bottle. Finally, we give an estimation for the number of flippable edges of a triangulation on general surfaces, using the notion of irreducible triangulations.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":"42 1","pages":"1041 - 1059"},"PeriodicalIF":0.5000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2377","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Concerning diagonal flips on triangulations, Gao et al. showed that any triangulation G on the sphere with n ≥ 5 vertices has at least n − 2 flippable edges. Furthermore, if G has minimum degree at least 4 and n ≥ 9, then G has at least 2n + 3 flippable edges. In this paper, we give a simpler proof of their results, and extend them to the case of the projective plane, the torus and the Klein bottle. Finally, we give an estimation for the number of flippable edges of a triangulation on general surfaces, using the notion of irreducible triangulations.
曲面上三角形的可翻转边
摘要关于三角形上的对角翻转,Gao等人证明了在n≥5个顶点的球面上的任何三角形G都至少有n−2条可翻转边。此外,如果G的最小度至少为4,且n≥9,则G至少有2n+3个可翻转边。本文给出了它们结果的一个简单证明,并将它们推广到射影平面、环面和克莱因瓶的情况。最后,利用不可约三角的概念,给出了一般曲面上三角剖分的可翻转边数的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信